ON UNIFIED THEORY FOR CONTINUITIES

MAHIDE KÜÇÜK and YALÇIN KÜÇÜK

Received 3 March 2000

The purpose of this study is to give a unified theory for some weak and strong continuous functions using operations.

2000 Mathematics Subject Classification: 54C10, 54D20, 54D30.

1. Introduction. It is well known that a large number of papers is devoted to the study of weak continuity and strong continuity definitions between topological spaces. Much of these were given using open, semiopen, preopen concepts, and so forth in topological spaces. Their theories run, either in part or in whole, parallel to their theory of continuous functions. Some authors like Kohli [8] and Kandil [7] tried to unify their definitions and properties.

Throughout the present paper, \((X, \tau)\) means topological space on which no separation axioms are assumed unless otherwise explicitly stated.

Let \(A\) be a subset of \(X\), the closure, semiclosure, and interior of \(A\) will be denoted by \(\text{cl}A\), \(\text{scl}A\), and \(\text{int}A\), respectively. The subset \(A\) is called semiopen [10] (resp., preopen [12], \(\alpha\)-open [15], and \(\beta\)-open [2]) if \(A \subset \text{cl}(\text{int}A)\) (resp., \(A \subset \text{int}(\text{cl}A)\), \(A \subset \text{scl}(\text{int}A)\), and \(A \subset \text{cl}(\text{int}(\text{cl}A))\)).

Definition 1.1 [7]. Let \((X, \tau)\) be a topological space. A mapping \(\varphi : P(X) \to P(X)\) is called an operation on \(P(X)\), where \(P(X)\) denotes the family of all the subsets of \(X\), if and only if for each \(A \in P(X) - \{\phi\}\), \(\text{int}A \subset A\varphi\) and \(\phi = \phi\varphi\), where \(A\varphi\) denotes the value of \(\varphi\) in \(A\). The class of all operations on \(P(X)\) is denoted by \(O_{(X, \tau)}\).

Definition 1.2 [7]. Let \((X, \tau)\) be a topological space. A partial order “\(\leq\)” on \(O_{(X, \tau)}\) is defined in the following way: \(\varphi_1 \leq \varphi_2 \iff A^{\varphi_1} \subseteq A^{\varphi_2}\), for each \(A \subseteq X\), where \(\varphi_1, \varphi_2 \in O_{(X, \tau)}\).

Definition 1.3 [7]. An operation \(\varphi \in O_{(X, \tau)}\) is called monotonous if and only if \(A \subseteq B \Rightarrow A^{\varphi} \subseteq B^{\varphi}\), for each \(A, B \subseteq X\).

Throughout, all the operations on \(P(X)\) are assumed to be monotonous.

Definition 1.4. Let \((X, \tau)\) be a topological space, \(G, H \in P(X)\), and \(\varphi \in O_{(X, \tau)}\). Then
(i) \(G\) is called \(\varphi\)-open if and only if \(G \subseteq G^{\varphi}\),
(ii) \(H\) is called \(\varphi\)-closed if and only if \(X - H\) is \(\varphi\)-open.

- If \(X^{\varphi} = X\) then each set of the form \(G^{\varphi}\) is \(\varphi\)-open.
- If each \(G \in P(X)\), \(G \subseteq G^{\varphi}\), then all the subsets of \(X\) are \(\varphi\)-open.
• If each \(G \in P(X) \), \(G \subseteq G^\varphi \), then \(G \) is \(\varphi \)-open if and only if \(G = G^\varphi \).
• If we take \(\varphi = \text{int} \), then \(\varphi \)-open sets are open sets.
• Any union of \(\varphi \)-open sets is \(\varphi \)-open [5].

The class of all \(\varphi \)-open (\(\varphi \)-closed) subsets of \(X \) is denoted by \(O_{\varphi}(X) \) (\(C_{\varphi}(X) \)). For each \(x \in X \), the class of \(\varphi \)-open neighborhoods of \(x \) is denoted by \(N_{\varphi}(X,x) \), that is,
\[
N_{\varphi}(X,x) = \{ V \subseteq X : x \in V \in O_{\varphi}(X) \}.
\]

The definitions of \(\varphi_{1,2} \)-closure and \(\varphi_{1,2} \)-interior of any subset \(A \) of \(X \) were given by El-Monsef et al. [1]. Similarly, the definition \(\varphi_{1,2} \)-frontier of \(A \) can be given in the following way.

Definition 1.5. Let \((X, \tau)\) be a topological space, \(x \in X \), \(A \in P(X) \), and \(\varphi_1, \varphi_2 \in O_{(X,\tau)} \). Then

(i) the \(\varphi_{1,2} \)-closure of \(A \), denoted by \(\varphi_{1,2} \cdot \text{cl} \ A \), is defined by \(x \in \varphi_{1,2} \cdot \text{cl} \ A \Leftrightarrow A \cap U_{\varphi_2} \neq \emptyset \), for all \(U \in N_{\varphi_1}(X,x) \) (see [7]);

(ii) the \(\varphi_{1,2} \)-interior of \(A \), denoted by \(\varphi_{1,2} \cdot \text{int} \ A \), is defined by \(x \in \varphi_{1,2} \cdot \text{int} \ A \Leftrightarrow U_{\varphi_2} \subseteq A \), for some \(U \in N_{\varphi_1}(X,x) \) (see [7]);

(iii) the \(\varphi_{1,2} \)-frontier of \(A \), denoted by \(\varphi_{1,2} \cdot \partial \ A \), is defined by \(x \in \varphi_{1,2} \cdot \partial \ A \Leftrightarrow A \cap U_{\varphi_2} = \emptyset \) and \((X - A) \cap U_{\varphi_2} = \emptyset \), for all \(U \in N_{\varphi_1}(X,x) \).

Definition 1.6. Let \((X, \tau)\) be a topological space, \(A \in P(X) \) and \(\varphi_1, \varphi_2 \in O_{(X,\tau)} \). Then

(i) \(A \) is \(\varphi_{1,2} \)-open if and only if \(A \subseteq \varphi_{1,2} \cdot \text{int} \ A \).

(ii) \(A \) is \(\varphi_{1,2} \)-closed if and only if \(\varphi_{1,2} \cdot \text{cl} \ A \subseteq A \).

The class of all \(\varphi_{1,2} \)-open (\(\varphi_{1,2} \)-closed) subsets of \(X \) is denoted by \(O_{\varphi_{1,2}}(X) \) (\(C_{\varphi_{1,2}}(X) \)). For each \(x \in X \), the class of \(\varphi_{1,2} \)-open neighborhoods of \(x \) is denoted by \(N_{\varphi_{1,2}}(X,x) \), that is,
\[
N_{\varphi_{1,2}}(X,x) = \{ V \subseteq X : x \in V \in O_{\varphi_{1,2}}(X) \} \quad \text{(see [7]).}
\]

Proposition 1.7. Let \((X, \tau)\) be a topological space and \(A \subseteq X \). Then the following statements are true:

1. \(\varphi_{1,2} \cdot \partial A = \varphi_{1,2} \cdot \text{cl} A \cap \varphi_{1,2} \cdot \text{cl}(X \setminus A) \).
2. \(\varphi_{1,2} \cdot \partial A = \varphi_{1,2} \cdot \text{cl} A - (\varphi_{1,2} \cdot \text{int} A) \).
3. \(\varphi_{1,2} \cdot \text{cl} A = \varphi_{1,2} \cdot \partial A \cup \varphi_{1,2} \cdot \text{int} A \).

Proof. The proof is immediate by definition of \(\varphi_{1,2} \)-frontier. \(\Box \)

2. Unified framework. The definition of \(\varphi_{1,2} \psi_{1,2} \)-continuity of any function \(f \) defined from a topological space \((X, \tau)\) to a topological space \((Y, \theta)\) can be given in the following way.

Definition 2.1. Let \((X, \tau), (Y, \theta)\) be topological spaces. A function \(f : (X, \tau) \rightarrow (Y, \theta) \) is said to be \(\varphi_{1,2} \psi_{1,2} \)-continuous at a point \(x \in X \) if for each \(V \in O_{\varphi_1}(Y) \) with \(f(x) \subseteq V \), there exists \(U \in O_{\varphi_1}(X,x) \) such that \(f(U_{\varphi_2}) \subseteq V_{\varphi_2} \) or \(U_{\varphi_2} \subseteq f^{-1}(V_{\varphi_2}) \). If \(f \) has this property at each point \(x \in X \), then \(f \) is \(\varphi_{1,2} \psi_{1,2} \)-continuous on \(X \).

The above definition plays a very important unification role in topology, because \(\varphi_{1,2} \psi_{1,2} \)-continuity reduces to a lot of existing continuity notions for some particular choices of the operations involved. Of course, there are a lot of other possible cases that can still be considered. We have the following table.
The following theorem characterizes \(\varphi_{1,2} \psi_{1,2} \)-continuous functions in terms of the \(\varphi_{1,2} \psi_{1,2} \)-interior, \(\varphi_{1,2} \psi_{1,2} \)-closure, and \(\varphi_{1,2} \psi_{1,2} \)-frontier of sets.

Theorem 2.2. Let \((X, \tau), (Y, \vartheta)\) be topological spaces, and let \(\varphi_1, \varphi_2 \in O(X, \tau), \psi_1, \psi_2 \in O(Y, \vartheta), I \leq \psi_2 \). Then the following statements are equivalent for a function \(f : (X, \tau) \to (Y, \vartheta) \):

1. \(f \varphi_{1,2} \psi_{1,2} \)-continuous;
2. \(f^{-1}(V) \subseteq \varphi_{1,2} \text{-int}(f^{-1}(\psi_2)) \) for each \(V \in O_{\psi_1}(Y) \);
3. for each \(x \in X \) and \(V \in N_{\psi_1}(Y, f(x)) \) there exists \(U \in N_{\varphi_1}(X, x) \) such that \(U \subseteq f^{-1}(\psi_2) \);
4. \(f^{-1}(V) \subseteq N_{\psi_1}(X, x) \) for each \(x \in X \) and \(V \in N_{\psi_1}(Y, f(x)) \);
5. \(f(\varphi_{1,2} \text{-cl}(A)) \subseteq \psi_{1,2} \text{-cl}(f(A)) \) for every \(A \subseteq X \);
6. \(\varphi_{1,2} \text{-cl}(f^{-1}(B)) \subseteq f^{-1}(\psi_{1,2} \text{-cl}(B)) \) for every \(B \subseteq Y \);
7. \(f^{-1}(\varphi_{1,2} \text{-int}(B)) \subseteq \varphi_{1,2} \text{-int}(f^{-1}(B)) \) for every \(B \subseteq Y \);
\[(8) \quad \varphi_{1,2} \circ\partial(f^{-1}(B)) \subseteq f^{-1}(\psi_{1,2} \circ\partial(B)) \text{ for every } B \subseteq Y;\]
\[(9) \quad f(\varphi_{1,2} \circ\partial(A)) \subseteq \psi_{1,2} \circ\partial(f(A)) \text{ for every } A \subseteq X;\]
\[(10) \quad f(\varphi_{1,2} \circ\partial(A)) \subseteq \psi_{1,2} \circ\cl(f(A)) \text{ for every } A \subseteq X.\]

Proof. (1)⇒(2). Let \(V \in O_{\varphi_1}(Y)\) and \(x \in f^{-1}(V)\). Then \(f(x) \in V\) and, by (1), there exists \(U \in O_{\varphi_1}(X, x)\) such that \(f(U_{\psi_2}) \subseteq V_{\psi_2}\) and hence \(U_{\psi_2} \subseteq f^{-1}(V_{\psi_2})\). Therefore, \(x \in \varphi_{1,2} \circ\int(f^{-1}(V_{\psi_2}))\).

(2)⇒(3). Let \(x \in X\) and \(V \in N_{\varphi_1}(Y, f(x))\). Then, there exists \(T \in O_{\varphi_1}(Y, f(x))\) such that \(T_{\psi_2} \subseteq V_{\psi_2}\). By (2), we have \(f^{-1}(T) \subseteq \varphi_{1,2} \circ\int(f^{-1}(T_{\psi_2}))\). Because \(x \in f^{-1}(T)\), we have \(x \in \varphi_{1,2} \circ\int(f^{-1}(T_{\psi_2}))\). By definition of \(\varphi_{1,2}\)-interior, there exists \(U \in O_{\varphi_1}(X, x)\) such that \(U_{\psi_2} \subseteq f^{-1}(T_{\psi_2}) \subseteq f^{-1}(V_{\psi_2})\) and hence \(U_{\psi_2} \subseteq f^{-1}(V_{\psi_2})\).

(3)⇒(4). Let \(x \in X\) and \(V \in N_{\varphi_1}(Y, f(x))\). By (3), there exists \(U \in O_{\varphi_1}(X, x)\) such that \(U_{\psi_2} \subseteq f^{-1}(V_{\psi_2})\). So, we have \(f^{-1}(V_{\psi_2}) \subseteq N_{\varphi_{1,2}}(X, x)\).

(4)⇒(5). Suppose that \(A \subseteq X\) and \(f(x) \notin \psi_{1,2} \circ\cl(f(A))\). Then, there exists \(V \in N_{\varphi_1}(Y, f(x))\) such that \(f(A) \cap V_{\psi_2} = \emptyset\). So, we have \(f^{-1}(f(A)) \cap f^{-1}(V_{\psi_2}) = \emptyset\) and hence \(A \cap f^{-1}(V_{\psi_2}) = \emptyset\). Since, by (4), \(f^{-1}(V_{\psi_2}) \subseteq N_{\varphi_{1,2}}(X, x)\), then there exists \(U \in O_{\varphi_1}(X, x)\) such that \(U_{\psi_2} \subseteq f^{-1}(V_{\psi_2})\). So, we have \(A \cap U_{\psi_2} = \emptyset\) and hence \(x \notin \varphi_{1,2} \circ\cl(A)\). Therefore \(f(x) \notin f(\psi_{1,2} \circ\cl(A))\).

(5)⇒(6). Let \(B \subseteq Y\). Because \(f(f^{-1}(B)) \subseteq B\), we have \(\psi_{1,2} \circ\cl(f(f^{-1}(B))) \subseteq \psi_{1,2} \circ\cl(B)\). By (5), \(f(\varphi_{1,2} \circ\cl(f^{-1}(B))) \subseteq \psi_{1,2} \circ\cl(f^{-1}(B)) \subseteq \psi_{1,2} \circ\cl(B)\). By applying \(f^{-1}\) to all sides of inclusion, we get \(\varphi_{1,2} \circ\cl(f^{-1}(B)) \subseteq f^{-1}(\psi_{1,2} \circ\cl(B))\).

(6)⇒(7). Let \(B \subseteq Y\) and \(x \in f^{-1}(\psi_{1,2} \circ\int(B))\). Then, \(x \notin X \setminus f^{-1}(\psi_{1,2} \circ\int(B)) = f^{-1}(Y \setminus \psi_{1,2} \circ\int(Y \setminus B))\), and hence \(x \notin f^{-1}(\psi_{1,2} \circ\cl(Y \setminus B))\). By (6), \(\varphi_{1,2} \circ\cl(f^{-1}(Y \setminus B)) \subseteq f^{-1}(\psi_{1,2} \circ\cl(Y \setminus B))\). Then \(x \notin \varphi_{1,2} \circ\cl(f^{-1}(Y \setminus B)) = \varphi_{1,2} \circ\cl(X \setminus f^{-1}(B)) = X \setminus \varphi_{1,2} \circ\int(f^{-1}(B))\), and hence \(x \in \varphi_{1,2} \circ\int(f^{-1}(B))\).

(7)⇒(1). Let \(x \in X\), and \(V \in N_{\varphi_1}(Y, f(x))\). Since \(V \subseteq V_{\psi_2}\), we have \(f(x) \in \psi_{1,2} \circ\int(V_{\psi_2})\), and hence \(x \in f^{-1}(\psi_{1,2} \circ\int(V_{\psi_2}))\). By (7), \(x \in \varphi_{1,2} \circ\int(f^{-1}(B))\). By the definition of \(\varphi_{1,2}\)-interior, there exists \(U \in O_{\varphi_1}(X, x)\) such that \(U_{\psi_2} \subseteq f^{-1}(V_{\psi_2})\). So, we have \(f(U_{\psi_2}) \subseteq V_{\psi_2}\).

(6)⇒(8). Let \(B \subseteq Y\). We have
\[
\varphi_{1,2} \circ\partial(f^{-1}(B)) = \varphi_{1,2} \circ\cl(f^{-1}(B)) \cap \varphi_{1,2} \circ\cl(X \setminus f^{-1}(B)) = f^{-1}(\psi_{1,2} \circ\cl(Y \setminus B)) = f^{-1}(\psi_{1,2} \circ\partial(B)).
\]
Let $A \subseteq X$. By $\varphi_{1,2}\text{cl}(A) \subseteq \varphi_{1,2}\text{cl}(A)$, we have $f(\varphi_{1,2}\text{cl}(A)) \subseteq f(\varphi_{1,2}\text{cl}(A)) \subseteq \psi_{1,2}\text{cl}(f(A))$, and hence $f(\varphi_{1,2}\text{cl}(A)) \subseteq \psi_{1,2}\text{cl}(f(A))$.

(10)\Rightarrow(5). Let $A \subseteq X$. By $\varphi_{1,2}\text{cl}(A) = \varphi_{1,2}\text{cl}(A) \cup \varphi_{1,2}\text{int}(A)$, we get $f(\varphi_{1,2}\text{cl}(A)) = f(\varphi_{1,2}\text{cl}(A) \cup f(\varphi_{1,2}\text{int}(A))) \subseteq \psi_{1,2}\text{cl}(f(A)) \cup f(\varphi_{1,2}\text{int}(A)) = \psi_{1,2}\text{cl}(f(A))$.

Therefore, $f(\varphi_{1,2}\text{cl}(A)) \subseteq \psi_{1,2}\text{cl}(f(A))$.

COROLLARY 2.3. If $f : (X, \tau) \to (Y, \vartheta)$ is $\varphi_{1,2}\psi_{1,2}$-continuous, then $f : (X, O_{\varphi_{1,2}}(X)) \to (Y, O_{\psi_{1,2}}(Y))$ is continuous.

Proof. Let $x \in X$ and $V \in O_{\varphi_{1,2}}(Y, f(x))$. Then $x \in f^{-1}(V)$, and there exists a $W \in O_{\varphi_{1}}(Y, f(x))$ such that $W \subseteq V$. Since f is $\varphi_{1,2}\psi_{1,2}$-continuous at x, for $W \in O_{\varphi_{1}}(Y, f(x))$ there exists a $U \in O_{\varphi_{1}}(X, x)$ such that $U \subseteq W \subseteq f^{-1}(W \subseteq f^{-1}(V))$. If $x \in \varphi_{1,2}\text{int}(f^{-1}(V))$, then $f^{-1}(V) \subseteq O_{\psi_{1,2}}(X, x)$.

The reverse implication of the corollary is not true.

EXAMPLE 2.4. Let $(X, \tau), (Y, \vartheta)$ be topological spaces defined by $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$, $Y = \{a, b, c\}$, $\vartheta = \{\phi, X, \{b\}\}$, and $\varphi_{1}, \varphi_{2} \in O_{(X, \tau)}$ defined by $\varphi_{1} = \tau\text{-int}$, and for any $A \in P(X)$, we have

$$A^{\varphi_{2}} = \begin{cases} \{a, b\}, & A = \{a\}; \\ A, & \text{otherwise}, \end{cases} \tag{2.2}$$

$\varphi_{1} \varphi_{2} \in O_{(Y, \vartheta)}$ defined by $\varphi_{1} = \vartheta\text{-int}$, and for any $B \in P(Y)$, we have

$$B^{\varphi_{2}} = \begin{cases} \{b, c\}, & B = \{b\}; \\ B, & \text{otherwise}. \end{cases} \tag{2.3}$$

Then $O_{\varphi_{1,2}}(X) = \{\phi, X, \{c\}\}$ and $O_{\varphi_{1,2}}(Y) = \{\phi, Y\}$. Let I be identity function. Because $I^{-1}(\{b\}^{\varphi_{2}}) = \{b, c\} \notin N_{\varphi_{1,2}}(X, b), I$ is not $\varphi_{1,2}\psi_{1,2}$-continuous but $I : (X, O_{\varphi_{1,2}}(X)) \to (Y, O_{\psi_{1,2}}(Y))$ is continuous.

To give a sufficient condition that the converse implication of Corollary 2.3 is true, we need to give the definition of $\varphi_{1,2}\text{-}$T2 space.

Definition 2.5. Let (X, τ) be a topological space and $\varphi_{1}, \varphi_{2} \in O_{(X, \tau)}$, then (X, τ) is

(i) $\varphi_{1,2}\text{-}T_{1}$ space if and only if $\{x\}$ is $\varphi_{1,2}$-closed for each $x \in X$,

(ii) $\varphi_{1,2}\text{-}T_{2}$ space if and only if any distinct points x, y of X have φ_{1}-neighborhoods $U \in N_{\varphi_{1}}(X, x), V \in N_{\varphi_{1}}(X, y)$, and $U^{\varphi_{2}} \cap V^{\varphi_{2}} = \emptyset$ (see [7]).

Theorem 2.6. Let $(X, \tau), (Y, \vartheta)$ be topological spaces, (Y, ϑ) is $\varphi_{1,2}\text{-}T_{2}$ space, and $I < \varphi_{2}$. Then $f : (X, \tau) \to (Y, \vartheta)$ is $\varphi_{1,2}\psi_{1,2}$-continuous if and only if $f : (X, O_{\varphi_{1,2}}(X)) \to (Y, O_{\psi_{1,2}}(Y))$ is continuous.

Proof. (\Rightarrow). Proved.

(\Leftarrow). Let $f : (X, O_{\varphi_{1,2}}(X)) \to (Y, O_{\psi_{1,2}}(Y))$ be continuous, $x \in X$, and $V \in N_{\varphi_{1}}(Y, f(x))$. Since (Y, ϑ) is $\varphi_{1,2}\text{-}T_{2}$ space, we have $V \in O_{\varphi_{1,2}}(Y, f(x))$. By hypothesis, $f^{-1}(V) \in O_{\varphi_{1,2}}(X)$. Since $x \in f^{-1}(V)$, there exists $U \in N_{\varphi_{1}}(X, x)$ such that $U^{\varphi_{2}} \subseteq f^{-1}(V)$.
and hence \(U^{\psi_2} \subseteq f^{-1}(V) \subseteq f^{-1}(V') \), and we have \(f(U^{\psi_2}) \subseteq V^{\psi_2} \). So \(f \) is \(\varphi_{1,2}\psi_{1,2} \)-continuous.

THEOREM 2.7. Let \((X, \tau), (Y, \theta)\) be topological spaces, \(I = \psi_2\). Then the following statements are equivalent:

1. \(f : (X, \tau) \to (Y, \theta) \) is \(\varphi_{1,2}\psi_{1,2} \)-continuous;
2. \(f^{-1}(V) \in O_{\psi_1}(X) \) for every \(V \in O_{\psi_1}(Y) \);
3. \(f^{-1}(K) \in C_{\psi_{1,2}}(X) \) for every \(K \in C_{\psi_1}(Y) \).

Proof. (1)\(\Rightarrow\) (2). Let \(f \) be \(\varphi_{1,2}\psi_{1,2} \)-continuous, \(V \in O_{\psi_1}(Y) \), and \(x \in f^{-1}(V) \). Since \(f(x) \in V \) and \(f \) is \(\varphi_{1,2}\psi_{1,2} \)-continuous, there exists \(U \in N_{\psi_1}(X,x) \) such that \(U^{\psi_2} \subseteq f^{-1}(V') \) for \(V \in O_{\psi_1}(Y) \). So, we have \(x \in f^{-1}(V) \subseteq \text{int}(f^{-1}(V)) \). Therefore, \(f^{-1}(V) \subseteq \text{int}(f^{-1}(V)) \), and \(f^{-1}(V) \in O_{\psi_1}(X) \).

(2)\(\Rightarrow\) (3). Let \(f \) be \(\varphi_{1,2}\psi_{1,2} \)-continuous, \(V \in O_{\psi_1}(Y) \), and \(x \in \text{int}(f^{-1}(V)) \). Therefore, \(f^{-1}(V) \subseteq \text{int}(f^{-1}(V)) \), and \(f^{-1}(V) \in O_{\psi_1}(X) \).

(3)\(\Rightarrow\) (2). It can be easily seen.

DEFINITION 2.8. Let \((X, \tau)\) be a topological space. An operator \(\varphi \in O_{(X,\tau)} \) is said to be \(\varphi_{1,2} \)-regular with respect to the family \(\Omega \subseteq P(X) \), if for each \(x \in X \) and \(U, V \in \Omega \) containing \(x \) there exists \(W \subseteq U \) containing \(x \) such that \(W^{\psi} \subseteq U^{\psi} \cap V^{\psi} \) (see [7]).

An operator \(\varphi_2 \in O_{(X,\tau)} \) is said to be \(\varphi_{1,2} \)-regular if and only if \(\Omega = O_{\varphi_1}(X) \), where \(\varphi_1 \in O_{(X,\tau)} \).

THEOREM 2.9. Let \((X, \tau), (Y, \theta)\) be topological spaces. Let \(\varphi_1, \varphi_2 \in O_{(X,\tau)} \) and \(\varphi_2 \in O_{(X,\tau)} \) be a \(\varphi_{1,2} \)-regular operator. Then for any function \(f : (X, \tau) \to (Y, \theta) \), \(f \) is \(\varphi_{1,2}\psi_{1,2} \)-continuous if and only if for each \(x \in X \), \(W \in N_{\varphi_1}(X,x) \), and \(V \in N_{\varphi_1}(Y, f(x)) \), there exists \(U \in N_{\varphi_1}(X,x) \) such that \(U^{\psi_2} \subseteq f^{-1}(V) \subseteq f^{-1}(f(V')) \).

Proof. (\(\Rightarrow\)). Let \(x \in f^{-1}(\text{int}(B)) \), for any \(B \subseteq Y \). Then we have \(f(x) \in \text{int}(B) \). By definition of \(\varphi_{1,2} \)-interior, there exists \(G \in O_{\varphi_1}(Y, f(x)) \) such that \(f(x) \in G^{\psi_2} \subseteq B \) and hence \(x \in f^{-1}(G^{\psi_2}) \). So, we have \(x \in \text{int}(f^{-1}(B)) \), for all \(W \in N_{\varphi_1}(X,x) \). By hypothesis, there exists \(U \in N_{\varphi_1}(X,x) \) such that \(x \in U^{\psi_2} \subseteq W^{\psi_2} \cap f^{-1}(V^{\psi_2}) \subseteq f^{-1}(f^{-1}(B)) \), and hence \(x \in \text{int}(f^{-1}(B)) \). Therefore, \(f^{-1}(\text{int}(B)) \subseteq \text{int}(f^{-1}(B)) \).

(\(\Rightarrow\)). Let \(V \in N_{\varphi_1}(Y, f(x)) \). There exists \(T \in O_{\varphi_1}(Y, f(x)) \) such that \(f(x) \in T^{\psi_2} \subseteq V^{\psi_2} \) and hence \(f(x) \in \text{int}(V^{\psi_2}) \). Therefore, \(x \in f^{-1}(\text{int}(V^{\psi_2})) \). By \(\varphi_{1,2}\psi_{1,2} \)-continuity of \(f \), \(x \in \text{int}(f^{-1}(V^{\psi_2})) \). By definition of \(\varphi_{1,2} \)-interior, there exists \(U \in O_{\varphi_1}(X,x) \) such that \(x \in U^{\psi_2} \subseteq f^{-1}(V^{\psi_2}) \). Since \(f \) is \(\varphi_{1,2} \)-regular, there exists \(U^* \in O_{\varphi_1}(X,x) \) such that \(x \in U^*^{\psi_2} \subseteq f^{-1}(V^{\psi_2}) \).

The following theorem characterizes the set of \(\varphi_{1,2}\psi_{1,2} \)-noncontinuous points denoted by \(\varphi_{1,2}\psi_{1,2}-\text{NC}(f) \) of any function \(f \).

THEOREM 2.10. Let \((X, \tau), (Y, \theta)\) be topological spaces, and let \(f : (X, \tau) \to (Y, \theta) \) be any function, \(\varphi_1, \varphi_2 \in O_{(X,\tau)} \), \(\varphi_1, \varphi_2 \in O_{(Y,\theta)} \), and \(I = \psi_2 \). Then \(\varphi_{1,2}\psi_{1,2}-\text{NC}(f) = \cup \{ f^{-1}(V) \cap \varphi_{1,2}-\mathfrak{d}(f^{-1}(V)) \mid V \in O_{\varphi_1}(Y) \} \).
Proof. Let $x \in \varphi_{1,2}\psi_{1,2}\cdot\text{NC}(f)$. Then f is not continuous at x. So there exists $W \in \mathcal{O}_{\varphi_{1}}(Y,f(x))$ such that $f(U_{\varphi_{2}}) \not\subseteq W_{\varphi_{2}}$ for each $U \in \mathcal{O}_{\varphi_{1}}(X,x)$. Hence for each $U \in \mathcal{O}_{\varphi_{1}}(X,x)$, we have $\emptyset \neq f(U_{\varphi_{2}}) \cap (Y-W) = f(U_{\varphi_{2}} \cap f^{-1}(Y-W)) = f(U_{\varphi_{2}} \cap (X-f^{-1}(W)))$. Therefore, we get $U_{\varphi_{2}} \cap (X-f^{-1}(W)) \neq \emptyset$ and hence $x \in \varphi_{1,2}\cdot\text{cl}(X,f^{-1}(W))$. On the other hand, $x \in \varphi_{1,2}\cdot\text{cl}(X \setminus f^{-1}(W)) \cap f^{-1}(W) = f^{-1}(W) \cap \varphi_{1,2}\cdot\partial(f^{-1}(W)) \subseteq \cup \{ f^{-1}(V) \cap \varphi_{1,2}\cdot\partial(f^{-1}(V)) \mid V \in \mathcal{O}_{\varphi_{1}}(Y) \}$. Finally, we get $x \in \cup \{ f^{-1}(V) \cap \varphi_{1,2}\cdot\partial(f^{-1}(V)) \mid V \in \mathcal{O}_{\varphi_{1}}(Y) \}$. This shows that $\varphi_{1,2}\psi_{1,2}\cdot\text{NC}(f) \subseteq \cup \{ f^{-1}(V) \cap \varphi_{1,2}\cdot\partial(f^{-1}(V)) \mid V \in \mathcal{O}_{\varphi_{1}}(Y) \}$. To show the reverse inclusion, let $x \in \cup \{ f^{-1}(V) \cap \varphi_{1,2}\cdot\partial(f^{-1}(V)) \mid V \in \mathcal{O}_{\varphi_{1}}(Y) \}$. There exists $V \in \mathcal{O}_{\varphi_{1}}(Y)$ such that $x \in f^{-1}(V) \cap \varphi_{1,2}\cdot\partial(f^{-1}(V)) = f^{-1}(V) \cap \partial(f^{-1}(V))$, and hence $x \notin \varphi_{1,2}\cdot\text{int}(f^{-1}(V))$. Suppose f is $\varphi_{1,2}\psi_{1,2}\cdot$continuous at x. Since $x \in f^{-1}(V)$ and $V \in \mathcal{O}_{\varphi_{1}}(Y)$, there exists $U \in \mathcal{O}_{\varphi_{1}}(X,x)$ such that $U_{\varphi_{2}} \subseteq f^{-1}(V_{\varphi_{2}}) = f^{-1}(V)$, and hence $x \in \varphi_{1,2}\cdot\text{int}(f^{-1}(V))$. This is a contradiction.

Theorem 2.11. Let $(X,\tau),(Y,\theta)$ be topological spaces and let $\varphi_{1},\varphi_{2},\varphi_{3},\varphi_{4} \in \mathcal{O}_{(X,\tau)}$, $\psi_{1},\psi_{2},\psi_{3},\psi_{4} \in \mathcal{O}_{(Y,\theta)}$ be operators with the property $\varphi_{3} \geq \varphi_{1}$, $\varphi_{2} \geq \varphi_{4}$, $\psi_{1} \geq \psi_{3}$, and $\psi_{4} \geq \psi_{2}$. Then for any function $f : (X,\tau) \rightarrow (Y,\theta)$, f is $\varphi_{1,2}\psi_{1,2}\cdot$continuous if and only if f is $\varphi_{3,4}\psi_{3,4}\cdot$continuous.

Proof. Let $x \in X$ and $V \in \mathcal{O}_{\varphi_{1}}(Y,f(x))$. Since $V \subseteq V_{\psi_{3}} \subseteq V_{\psi_{1}}$ and hence $V \subseteq V_{\psi_{1}}$, we have $V \in \mathcal{O}_{\varphi_{1}}(Y,f(x))$, by $\varphi_{1,2}\psi_{1,2}\cdot$continuity of f, there exists $U \in \mathcal{O}_{\varphi_{1}}(X,x)$ such that $U_{\varphi_{2}} \subseteq f^{-1}(V_{\varphi_{2}}) \subseteq f^{-1}(V_{\psi_{3}})$. By $U_{\varphi_{2}} \subseteq U_{\varphi_{2}}$ and $V_{\varphi_{2}} \subseteq V_{\psi_{3}}$, we have $U_{\varphi_{2}} \subseteq V_{\varphi_{2}} \subseteq f^{-1}(V_{\psi_{3}}) \subseteq f^{-1}(V_{\psi_{2}})$, and hence $U_{\varphi_{2}} \subseteq f^{-1}(V_{\psi_{2}})$. Therefore, f is $\varphi_{3,4}\psi_{3,4}\cdot$continuous.

Theorem 2.12. Let (X,τ) be a topological space, and let $\varphi_{1},\varphi_{2},\varphi_{3},\varphi_{4} \in \mathcal{O}_{(X,\tau)}$ be operators with the property $\varphi_{1} \geq \varphi_{3}$, $\varphi_{2} \geq \varphi_{4}$. Then the identity function $I : (X,\tau) \rightarrow (Y,\theta)$ is $\varphi_{1,2}$, $\varphi_{3,4}\cdot$continuous.

Proof. Let $x \in X$ and $V \in \mathcal{O}_{\varphi_{3}}(Y,I(x))$. Since $V_{\psi_{3}} \subseteq V_{\psi_{1}}$, then we have $V \in \mathcal{O}_{\varphi_{1}}(X,I(x))$. So we get $I(V_{\varphi_{2}}) = V_{\psi_{2}} \subseteq V_{\psi_{4}}$ and hence $I(V_{\varphi_{2}}) \subseteq V_{\psi_{4}}$. Therefore, I is $\varphi_{1,2}$, $\varphi_{3,4}\cdot$continuous.

The last two theorems give the following diagrams:

$$\begin{align*}
\delta\cdot\text{continuity} & \implies \theta\cdot\text{continuity}, \\
\text{strongly } \theta\cdot\text{continuity} & \implies \text{super continuity} \implies \text{continuity}, \\
\text{almost strongly } \theta\cdot\text{continuity} & \implies \delta\cdot\text{continuity} \implies \text{almost continuity}, \\
\theta\cdot\text{continuity} & \implies \text{weakly } \theta\cdot\text{continuity} \implies \text{weakly continuity}, \\
\text{semicontinuity} & \implies \beta\cdot\text{continuity}, \\
\text{continuity} & \implies \alpha\cdot\text{continuity} \implies \text{pre-continuity}, \\
\text{almost continuity} & \implies \theta\cdot\text{continuity} \implies \text{weakly continuity},
\end{align*}$$
3. Some properties of \(\varphi_{1,2}\psi_{1,2}\)-continuous functions

Theorem 3.1. Let \(f : (X, \tau) \to (Y, \vartheta) \) be a one-to-one and \(\varphi_{1,2}\psi_{1,2}\)-continuous function and let \((Y, \vartheta)\) be a \(\varphi_{1,2}-T_2(\varphi_{1,2}-T_1) \) topological space. Then \((X, \tau)\) is a \(\varphi_{1,2}-T_2(\varphi_{1,2}-T_1) \) topological space.

Proof. We prove \((X, \tau)\) is a \(\varphi_{1,2}-T_2 \). The other case can be proved similarly. Let \(x, y \in X \) and \(x \neq y \). Since \(f \) is a one-to-one function, we have \(f(x) \neq f(y) \). Since \((Y, \vartheta)\) is a \(\varphi_{1,2}-T_2 \), then there exist \(V_1 \in N_{\varphi_1}(Y, f(x)) \), \(V_2 \in N_{\varphi_2}(Y, f(y)) \), and \(V_1^{\varphi_2} \cap V_2^{\varphi_2} = \emptyset \). Since \(f \) is \(\varphi_{1,2}\psi_{1,2}\)-continuous, then there exist \(U_1 \in N_{\varphi_1}(X, x) \), \(U_2 \in N_{\varphi_1}(X, y) \) such that \(f(U_1^{\varphi_2}) \subseteq V_1^{\varphi_2} \) and \(f(U_2^{\varphi_2}) \subseteq V_2^{\varphi_2} \) and \(f(U_1^{\varphi_2}) \cap f(U_2^{\varphi_2}) = \emptyset \). Hence we have \(U_1^{\varphi_2} \cap U_2^{\varphi_2} = \emptyset \). Therefore \((X, \tau)\) is a \(\varphi_{1,2}-T_2 \).

Theorem 3.2. The topological space \((X, \tau)\) is a \(\varphi_{1,2}-T_1 \) \((i = 1, 2)\) if and only if for any \(x, y \in X \) and \(x \neq y \) there exists a \((Y, \vartheta)\) topological space with \(\varphi_{1,2}-T_2 \), a function \(f \) from \((X, \tau)\) to \((Y, \vartheta)\) such that \(\varphi_{1,2}\psi_{1,2}\)-continuous, and \(f(x) \neq f(y) \).

Proof. We prove the theorem for \(i = 2 \). The other case can be proved similarly.

\((\Rightarrow)\). Suppose \((X, \tau)\) is a \(\varphi_{1,2}-T_2 \), it is easy to check that the identity function defined from \((X, \tau)\) to \((X, \tau)\) is the desired function \(f \).

\((\Leftarrow)\). Let \(x, y \in X \) and \(x \neq y \). By hypothesis, there exists a \((Y, \vartheta)\) topological space with \(\varphi_{1,2}-T_2 \), an \(f \) function from \((X, \tau)\) to \((Y, \vartheta)\) such that \(\varphi_{1,2}\psi_{1,2}\)-continuous and \(f(x) \neq f(y) \). Since \((Y, \vartheta)\) is \(\varphi_{1,2}-T_2 \) and \(f(x) \neq f(y) \), then there exist \(V_1 \in N_{\varphi_1}(Y, f(x)) \), \(V_2 \in N_{\varphi_2}(Y, f(y)) \), and \(V_1^{\varphi_2} \cap V_2^{\varphi_2} = \emptyset \). Since \(f \) is \(\varphi_{1,2}\psi_{1,2}\)-continuous, then there exist \(U_1 \in N_{\varphi_1}(X, x) \), \(U_2 \in N_{\varphi_1}(X, y) \) such that \(f(U_1^{\varphi_2}) \subseteq V_1^{\varphi_2} \) and \(f(U_2^{\varphi_2}) \subseteq V_2^{\varphi_2} \) and \(f(U_1^{\varphi_2}) \cap f(U_2^{\varphi_2}) = \emptyset \). Hence we have \(U_1^{\varphi_2} \cap U_2^{\varphi_2} = \emptyset \). Therefore \((X, \tau)\) is a \(\varphi_{1,2}-T_2 \).

Definition 3.3. Let \((X, \tau)\) be a topological space and \(\varphi_{1,2}, \varphi_{2} \in O_{(X, \tau)} \).

(i) The family \(\Omega \subseteq O_{\varphi_1}(X) \) is called a \(\varphi_{1,2}\)-open cover of a set \(K \) if and only if \(K \subseteq \cup\{U^{\varphi_2} \mid U \in \Omega\} \).

(ii) Let the family \(\Omega \subseteq O_{\varphi_1}(X) \) be a \(\varphi_{1,2}\)-open cover of a set \(K \). The subfamily \(\Omega^* \) of \(\Omega \) is called a \(\varphi_{1,2}\)-open subcover of the set \(K \) if and only if \(K \subseteq \cup\{U^{\varphi_2} \mid U \in \Omega^*\} \) (see [7]).

(iii) Any subset \(K \) of \(X \) is called \(\varphi_{1,2}\)-compact if and only if each \(\varphi_{1,2}\)-open cover of \(K \) has a finite \(\varphi_{1,2}\)-open subcover of \(K \).

(iv) The set \(X \) is called \(\varphi_{1,2}\)-compact if and only if it is \(\varphi_{1,2}\)-compact (see [7]).

Theorem 3.4. Let \(f \) be a \(\varphi_{1,2}\psi_{1,2}\)-continuous function defined from \((X, \tau)\) to \((Y, \vartheta)\) and \(A \subseteq X \) be \(\varphi_{1,2}\)-compact. Then \(f(A) \) is \(\varphi_{1,2}\)-compact.
Theorem 3.5. Let $f : (X, \tau) \to (Y, \theta)$ be a $\varphi_{1,2}\psi_{1,2}$-continuous function and (X, τ) be a $\varphi_{1,2}$-compact space. Then (Y, θ) is $\psi_{1,2}$-compact.

Proof. The proof is immediate from Theorem 3.4.

Definition 3.6. Let (X, τ) be a topological space and $\varphi_1, \varphi_2 \in O(X, \tau)$. A subset D of X is called $\varphi_{1,2}$-dense in X if and only if $\varphi_{1,2}\text{-cl}(D) = X$.

Theorem 3.7. Let $f, g : (X, \tau) \to (Y, \theta)$ be $\varphi_{1,2}\psi_{1,2}$-continuous functions and φ_2 regular with respect to $O_{\varphi_1}(X)$ and let (Y, θ) be $\psi_{1,2}$-T_2 space. If $D \subseteq X$ is a closed $\varphi_{1,2}$-dense set and $f(x) = g(x)$ for each $x \in D$. Then $f = g$.

Proof. Suppose $x_0 \in X$ and $x_0 \notin D$. Then $f(x_0) \neq g(x_0)$. Since (Y, θ) is $\psi_{1,2}$-T_2, then there exist $V_1 \in N_{\varphi_1}(f(x_0)), V_2 \in N_{\varphi_1}(g(x_0))$, and $V_1^{\varphi_2} \cap V_2^{\varphi_2} = \emptyset$. Since f, g are $\varphi_{1,2}\psi_{1,2}$-continuous at x_0, then there exist $U_1 \in N_{\varphi_1}(X, x_0), U_2 \in N_{\varphi_1}(X, x_0)$ such that $f(U_1^{\varphi_2}) \subseteq V_1^{\varphi_2}$ and $g(U_2^{\varphi_2}) \subseteq V_2^{\varphi_2}$. By regularity of φ_2, there exists $U_0 \in N_{\varphi_1}(X, x_0)$ such that $U_0^{\varphi_2} \subseteq U_1^{\varphi_2} \cap U_2^{\varphi_2}$. So, by $V_1^{\varphi_2} \cap V_2^{\varphi_2} = \emptyset$, we have $U_0^{\varphi_2} \cap D = \emptyset$ and hence $x \notin \varphi_{1,2}\text{-cl}(D)$. This contradicts the $\varphi_{1,2}$-closedness of D and $D = \varphi_{1,2}\text{-cl}(D) = X$. So, we have $D = X$.

Theorem 3.8. Let $(X_1, \tau_1), (Y_1, \theta_1)$ $(i = 1, 2)$ be topological spaces, and $F = f_1 \times f_2 : (X_1 \times X_2, \tau_1 \times \tau_2) \to (Y_1 \times Y_2, \theta_1 \times \theta_2), \varphi_{11}, \varphi_{12} \in O(X_1, \tau_1), \varphi_{21}, \varphi_{22} \in O(X_2, \tau_2)$, and let $\psi_{11}, \psi_{12} \in O(Y_1, \theta_1), \psi_{21}, \psi_{22} \in O(Y_2, \theta_2)$ be operators.

If $f_1 : (X_1, \tau_1) \to (Y_1, \theta_1)$ is $\varphi_{11,12}\psi_{11,12}$-continuous and $f_2 : (X_2, \tau_2) \to (Y_2, \theta_2)$ is $\varphi_{21,22}\psi_{21,22}$-continuous, then F is a $\varphi_{1,2}\psi_{1,2}$-continuous function, where $\varphi_1, \varphi_2 \in O(X_1 \times X_2, \tau_1 \times \tau_2), \psi_1, \psi_2 \in O(Y_1 \times Y_2, \theta_1 \times \theta_2)$, and $\varphi_{1,2}$ is monotonous and compatible with ψ_{12} and ψ_{22}.

Proof. Let $(x, y) \in X_1 \times X_2$ and $V \in O_{\psi_{11}}(Y_1 \times Y_2, (f_1(x), f_2(y)))$. Then there exist $V_1 \in O_{\psi_{11}}(f_1(x), f_1(y))$ and $V_2 \in O_{\psi_{21}}(f_2(y))$ such that $(f_1(x), f_2(y)) \in V_1 \times V_2$. Since f_1 is $\varphi_{11,12}\psi_{11,12}$-continuous and f_2 is $\varphi_{21,22}\psi_{21,22}$-continuous, then there exist $U_1 \in O_{\varphi_{11}}(X_1, x)$ and $U_2 \in O_{\varphi_{21}}(X_2, y)$ such that $U_1^{\varphi_{12}} \subseteq f_1^{-1}(V_1^{\psi_{12}})$ and $U_2^{\varphi_{21}} \subseteq f_2^{-1}(V_2^{\psi_{21}})$. Since $U_1 \times U_2 \in O_{\varphi_1}(X_1 \times X_2, (x, y))$, we have $F(U_1^{\varphi_{12}} \times U_2^{\varphi_{21}}) = f_1(U_1^{\varphi_{12}}) \times f_2(U_2^{\varphi_{21}}) \subseteq V_1^{\psi_{12}} \times V_2^{\psi_{21}} \subseteq V_{\theta_2}$. Therefore, F is a $\varphi_{1,2}\psi_{1,2}$-continuous function.

Theorem 3.9. Let $(X, \tau), (Y, \theta)$, and let (Z, ω) be topological spaces and let $f_1 : (X, \tau) \to (Y, \theta), f_2 : (X, \tau) \to (Z, \omega)$ be any functions. Let $f : (X, \tau) \to (Y \times Z, \tau \times \omega)$ be a function defined by $f(x) = (f_1(x), f_2(x))$ for each $x \in X$, and let $\varphi_1, \varphi_2 \in O(X, \tau), \psi_1, \psi_2 \in O(Y, \theta), \psi_1, \psi_2 \in O(Z, \omega)$, and $\xi_1, \xi_2 \in O(Y \times Z, \tau \times \omega)$ be operators. Then the following statements are true:

(i) if $A \subseteq X, B \subseteq Y, C \subseteq Z$, and $f(A) \subseteq B \times C$, then $f_1(A) \subseteq B$ and $f_2(A) \subseteq C$;
function defined by
\[f(x) = (f_1(x), f_2(x)) \]
for each \(x \in X \) and let \(\psi_1, \psi_2 \in O_{(X, \tau)}, \psi_1, \psi_2 \in O_{(Y, \vartheta)}, y_1, y_2 \in O_{(Z, \varpi)} \), and \(\xi_1, \xi_2 \in O_{(Y \times Z, \tau \times \varpi)} \) be operators with the property \(\xi_2 \) compatible with \(\psi_2 \) and \(y_2 \). Then \(f \) is \(\psi_1, \psi_2 \)-continuous if and only if \(f_1 \) is \(\psi_2 \)-continuous and \(f_2 \) is \(\psi_1, \psi_2 \)-continuous.

Proof. \((\Rightarrow) \). Let \(x \in X, V \in O_{\psi_1}(Y, f_1(x)) \), and \(W \in O_{\psi_1}(Z, f_2(x)) \). Then we have \(V \times W \subseteq O_{\xi_1}(Y \times Z, f(x)) \). By \(\psi_1, \psi_2 \)-continuity of \(f_1 \), there exists \(U \in O_{\psi_1}(X, x) \) such that \(f(U) \subseteq V \times W \). By Theorem 3.9(iii), we have \(f_1(U) \subseteq V \) and \(f_2(U) \subseteq W \). Thus \(f(U) \subseteq V \times W \). Then we have \(f(U) \subseteq V \times W \). This proves the \(\psi_1, \psi_2 \)-continuity of \(f \) at \(x \).

\((\Leftarrow) \). Conversely, let \(x \in X \) and \(T \in O_{\xi_1}(Y \times Z, f(x)) \). By Theorem 3.9(ii), there exist \(V \in O_{\psi_1}(Y, f_1(x)) \) and \(W \in O_{\psi_1}(Z, f_2(x)) \) such that \(f(U) \subseteq V \times W \). Thus \(f \) is \(\psi_1, \psi_2 \)-continuous at \(x \).

Theorem 3.10. Let \((X, \tau), (Y, \vartheta), \) and \((Z, \varpi)\) be topological spaces and \(f_1 : (X, \tau) \to (Y, \vartheta) \) and \(f_2 : (X, \tau) \to (Z, \varpi) \) any functions. Let \(f : (X, \tau) \to (Y \times Z, \tau \times \varpi) \) be a function defined by \(f(x) = (f_1(x), f_2(x)) \) for each \(x \in X \) and let \(\psi_1, \psi_2 \in O_{(X, \tau)}, \psi_1, \psi_2 \in O_{(Y, \vartheta)}, y_1, y_2 \in O_{(Z, \varpi)} \), and \(\xi_1, \xi_2 \in O_{(Y \times Z, \tau \times \varpi)} \) be operators with the property \(\xi_2 \) compatible with \(\psi_2 \) and \(y_2 \). Then \(f \) is \(\psi_1, \psi_2 \)-continuous if and only if \(f_1 \) is \(\psi_2 \)-continuous and \(f_2 \) is \(\psi_1, \psi_2 \)-continuous.

Proof. \((\Rightarrow) \). Let \(x \in X, V \in O_{\psi_1}(Y, f_1(x)) \), and \(W \in O_{\psi_1}(Z, f_2(x)) \). Then we have \(V \times W \in O_{\xi_1}(Y \times Z, f(x)) \). By \(\psi_1, \psi_2 \)-continuity of \(f_1 \), there exists \(U \in O_{\psi_1}(X, x) \) such that \(f(U) \subseteq V \times W \). By Theorem 3.9(iii), we have \(f(U) \subseteq V \) and \(f_2(U) \subseteq W \). Thus \(f(U) \subseteq V \times W \). This proves the \(\psi_1, \psi_2 \)-continuity of \(f \) at \(x \).

Definition 3.12 [7]. A topological space \((X, \tau)\) is called \(\psi_1, \psi_2 \)-hyperconnected if \(X = U \psi_2 \) for each \(U \in O_{\psi_1}(X) \).

Theorem 3.13. If \(f : (X, \tau) \to (Y, \vartheta) \) is a \(\psi_1, \psi_2 \)-continuous surjection function and \((X, \tau)\) is \(\psi_1, \psi_2 \)-hyperconnected, then \((Y, \vartheta) \) is \(\psi_1, \psi_2 \)-hyperconnected.

Proof. Let any \(x \in X \) and \(V \in O_{\psi_1}(Y, f(x)) \). By \(\psi_1, \psi_2 \)-continuity of \(f \), there exists \(U \in O_{\psi_1}(X, x) \) such that \(f(U) \subseteq V \). Since \((X, \tau) \) is \(\psi_1, \psi_2 \)-hyperconnected, we have \(Y = f(X) = f(U) \subseteq V \). Hence \(Y = V \).

References

Mahide Küçük: Department of Mathematics, Anadolu University, Eskişehir, Turkey
E-mail address: mkucuk@anadolu.edu.tr

Yalçın Küçük: Department of Mathematics, Anadolu University, Eskişehir, Turkey
E-mail address: ykucuk@anadolu.edu.tr

URL: http://www.anadolu.edu.tr
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>February 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>