ON A CLASS OF EVEN-DIMENSIONAL MANIFOLDS STRUCTURED BY AN AFFINE CONNECTION

I. MIHAI, A. OIAGĂ, and R. ROSCA

We deal with a 2m-dimensional Riemannian manifold \((M,g)\) structured by an affine connection and a vector field \(\mathcal{F}\), defining a \(\mathcal{F}\)-parallel connection. It is proved that \(\mathcal{F}\) is both a torse forming vector field and an exterior concurrent vector field. Properties of the curvature 2-forms are established. It is shown that \(M\) is endowed with a conformal symplectic structure \(\Omega\) and \(\mathcal{F}\) defines a relative conformal transformation of \(\Omega\).

2000 Mathematics Subject Classification: 53B05, 53C05, 53D05.

1. Introduction. In [5], a class of odd-dimensional manifolds endowed with a \(\mathcal{F}\)-parallel connection was investigated.

In the present paper, we consider a 2m-dimensional Riemannian manifold \((M,g)\), structured by an affine connection defined by the torsion 2-forms \(S^A, A \in \{1,2,\ldots,2m\}\). If \(\{e_A\}\) and \(\{\omega^A\}\) are a vector and a covector basis, respectively, and \(\mathcal{F}(T^A)\) a vector field (called the structure vector field of \(M\)), we assume that \(\mathcal{F}\) defines a \(\mathcal{F}\)-parallel connection, in the sense of [9] (see also [2, 4]), that is, the connection forms associated with \(\{e_A\}\) and \(\{\omega^A\}\) satisfy

\[\theta^A_B = \langle \mathcal{F}, e_B \wedge e_A \rangle = T^B \omega^A - T^A \omega^B, \tag{1.1} \]

where \(\wedge\) means the wedge product of vector fields, which implies \(\nabla_{\mathcal{F}} e_A = 0\).

Next, we assume that the torsion forms \(S^A\) are exterior recurrent (abbreviated ER) [1] with \(\alpha = \mathcal{F}^\perp\) as recurrence form, that is, \(dS^A = \alpha \wedge S^A\).

Assuming that \(T^A\) are also ER with a certain Pfaffian \(u\) as recurrence form, that is, \(dT^A = T^A u\), and denoting \(2t = \|\mathcal{F}\|^2\), we have

\[\nabla \mathcal{F} = 2t dp + (u - \alpha) \otimes \mathcal{F}, \tag{1.2} \]

where \(dp\) is the soldering form of \(M\) [3], which says that \(\mathcal{F}\) is a torse forming vector field [8, 11, 12].

We derive

\[\nabla^2 \mathcal{F} = 2t (u + \alpha) \wedge dp, \tag{1.3} \]

that is, \(\mathcal{F}\) is an exterior concurrent vector field [10] (see also [4]).

Setting \(S = S^1 \wedge S^2 \wedge \cdots \wedge S^{2m}\), we find that the \(4m\)-form \(S\) associated with \(M\) is ER with \(4m\alpha\) as recurrence form.
It is shown that the curvature 2-forms Θ^A_B are ER having the closed 1-form $2(u + \alpha)$ as recurrence form. We agree to define such a manifold as an exterior recurrent curvature 2-form manifold.

Finally, assuming that M carries an almost symplectic form Ω, that is, a nondegenerate differential 2-form, we prove that Ω is a conformal symplectic form.

It is shown that \mathcal{T} defines a relative conformal transformation of the conformal symplectic form Ω (see [5]).

The above results are stated in Theorem 3.1.

2. Preliminaries. Let (M,g) be a $2m$-dimensional oriented Riemannian manifold structured by an affine differential operator ∇.

Let $\Gamma(TM)$ be the set of sections of the tangent bundle and $\flat : TM \to T^*M$ and $\sharp : T^*M \to TM$ the classical musical isomorphisms defined by g (i.e., \flat is the index lowering operator and \sharp is the index raising operator).

Following [7], we denote by

$$A^q(M,TM) = \Gamma \text{Hom}(\wedge^q TM, TM)$$

the set of vector-valued q-forms ($q \leq \dim M$) and we write for the affine operator ∇

$$d^\nabla : A^q(M,TM) \to A^{q+1}(M,TM).$$

If $dp \in A^1(M,TM)$ is the canonical vector-valued 1-form of M, then as an extension of the Levi-Civita operator and by [3], we agree to call dp the soldering form of M.

Let the unit vector fields $\{e_A\}$ be an orthonormal vector basis and $\{\omega^A\}$ its corresponding cobasis on M, $A = 1, \ldots, 2m$. Then, if θ^A_B, S^A, and Θ^A_B denote the connection forms, the torsion 2-forms and the curvature 2-forms, respectively, Cartan’s structure equations are expressed by

$$\nabla e_A = \theta^A_B \otimes e_B,$$
$$d\omega^A = \omega^B \wedge \theta^A_B + S^A,$$
$$d\theta^A_B = \Theta^A_C \wedge \theta^C_B + \Theta^A_B.$$

We recall the following definitions (cf. [4]).

A vector field \mathcal{T} is said to be a torse forming vector field [12] if it satisfies

$$\nabla \mathcal{T} = f \mathcal{T} + v \otimes \mathcal{T}, \quad f \in C^\infty M, \quad v \in \wedge^1 M.$$

Also, the vector field \mathcal{T} is called exterior concurrent [10] if

$$\nabla^2 \mathcal{T} = \pi \wedge dp, \quad \pi \in \wedge^1 M.$$

If $Z, Z' \in \Gamma(TM)$, we also have the following formula:

$$d\omega(Z, Z') = \mathcal{L}_{Z'} \omega(Z) - \mathcal{L}_Z \omega(Z') + \omega([Z, Z']),$$

where \mathcal{L} is the Lie derivative.
ON A CLASS OF EVEN-DIMENSIONAL MANIFOLDS …

Since \(dp = \omega^A \wedge e_A \), then it follows that

\[
d^\nabla (dp) = S^A \otimes e_A. \tag{2.9}
\]

3. Manifolds with affine connection. In the present paper, we assume first that the \(2m \)-dimensional Riemannian manifold \((M,g)\) carries a structure vector field \(\mathcal{T}(T^A) \) which defines a \(\mathcal{T} \)-parallel connection, in the sense of [9] (see also [2, 4]). Such a connection is expressed by

\[
\theta^A_B = \langle \mathcal{T}, e_B \wedge e_A \rangle = T^B \omega^A - T^A \omega^B. \tag{3.1}
\]

Since we quickly find from (3.1) that

\[
\nabla_{\mathcal{T}} e_A = 0, \tag{3.2}
\]

this agrees with the definition of \(\mathcal{T} \)-parallel connection.

Setting \(2t = \|T\|^2 \), we derive

\[
\nabla \mathcal{T} = 2t \ dp - \alpha \otimes \mathcal{T} + \sum_A dT^A \otimes e_A, \tag{3.3}
\]

where \(\alpha = \mathcal{T}^\ast \) is the dual 1-form of \(\mathcal{T} \). Also, we find by (3.1) and (2.4) that

\[
d \omega^A = \alpha \wedge \omega^A + S^A. \tag{3.4}
\]

Second, we assume that the torsion forms \(S^A \) are exterior recurrent [1] having \(\alpha \) as recurrence form, that is,

\[
d S^A = \alpha \wedge S^A, \tag{3.5}
\]

and \(T^A \) are ER with the Pfaffian \(u \) as recurrence form, that is,

\[
d T^A = T^A u. \tag{3.6}
\]

We obtain \(d \alpha = 0 \), that is, \(\alpha^\ast = \mathcal{T} \) is a closed vector field.

Under these conditions, it follows from (3.3) and (3.6) that

\[
\nabla \mathcal{T} = 2t \ dp + (u - \alpha) \otimes \mathcal{T}; \tag{3.7}
\]

this proves that \(\mathcal{T} \) is a torse forming vector field [4, 8, 11, 12]. Since the operator \(\nabla \) acts inductively and clearly by (3.6), then

\[
d t = 2t u, \tag{3.8}
\]

we infer

\[
d^\nabla (\nabla \mathcal{T}) = \nabla^2 \mathcal{T} = 2t (u + \alpha) \wedge dp. \tag{3.9}
\]

This means that the vector field \(\mathcal{T} \) is an exterior concurrent vector field [6, 10].
By [6], (3.9) implies that
\[R(\mathcal{F}, Z) = -(2m - 1)2tg(\mathcal{F}, Z), \quad Z \in \Gamma(TM), \] (3.10)
where \(R \) denotes the Ricci tensor field on \(M \).

By (3.9) and by standard calculation, we derive
\[\nabla^4 \mathcal{F} = 0 \] (3.11)
and therefore we may say that the vector field \(\mathcal{F} \) is an element of
\[\Gamma \text{Hom}\left(\wedge^4 TM, TM\right). \] (3.12)

On the other hand, recall that the Bianchi forms in the sense of Tachibana are defined by
\[\Omega^{(p)}_{\alpha_1, \ldots, \alpha_{2p}} = \Omega_{\alpha_2}^{\alpha_1} \wedge \Omega_{\alpha_3}^{\alpha_2} \wedge \cdots \wedge \Omega_{\alpha_{2p}}^{\alpha_{2p-1}}, \] (3.13)
where \(\Omega_{\alpha_{2p+1}}^{\alpha_{2p+1}} \) are 2-forms. Thus, setting
\[S = S^1 \wedge S^2 \wedge \cdots \wedge S^{2m}, \] (3.14)
we find that
\[dS = 4m\alpha \wedge S. \] (3.15)

Therefore, we may say that the \(4m \)-form \(S \) associated with \(M \) is ER with \(4m\alpha \) as recurrence form.

By (3.4) we may set
\[S^A = u \wedge \omega^A \] (3.16)
and by (3.1) and the structure equations (2.5) we get after some calculations
\[\Theta^3_B = 2(u + \alpha) \wedge \omega^3_B + 2t \omega^B \wedge \omega^A. \] (3.17)

Next, performing the exterior differentiation of \(\Theta^3_B \), we derive, taking account of (3.8)
\[d\Theta^3_B = 2(u + \alpha) \wedge \Theta^3_B. \] (3.18)

This shows that all curvature forms \(\Theta^3_B \) are ER and have the closed 1-form \(2(u + \alpha) \) as recurrence form.

We agree to define such an even-dimensional manifold \(M \) as an exterior recurrent curvature 2-form manifold.

Finally, assume that \(M \) carries an almost symplectic form \(\Omega \). Then, we may express \(\Omega \) as
\[\Omega = \sum_{a=1}^{m} \omega^a \wedge \omega^{a*}, \quad a^* = a + m. \] (3.19)
Taking the exterior differentiation of Ω, we find by (3.4) and (3.16) that
\[d\Omega = 2(\alpha + u) \wedge \Omega. \] (3.20)

This shows that the manifold under consideration is endowed with a conformal symplectic structure having $\alpha + u$ as covector of Lee.

Moreover, taking the Lie differentiation of Ω with respect to the structure vector field \mathcal{T}, we infer
\[\mathcal{L}_\mathcal{T} \Omega = ut \Omega + 2(u + \alpha) \wedge \sum_{a=1}^{m} (T^a \omega^a - T^a \omega^b). \] (3.21)

Using (3.8) and (3.6), the exterior differentiation of (3.21) gives
\[d\mathcal{L}_\mathcal{T} \Omega = 8t u \wedge \Omega. \] (3.22)

Hence, by [4], the above equation says that \mathcal{T} defines a relative conformal transformation of the conformal symplectic form Ω.

Summing up, we state the following theorem.

Theorem 3.1. Let (M, g) be a $2m$-dimensional Riemannian manifold structured by an affine connection defined by the torsion 2-forms S^A, $A = 1, \ldots, 2m$. Let $\mathcal{F}(T^A)$ be a structure vector field, which defines a \mathcal{F}-parallel connection and assume that S^A are exterior recurrent, having $\mathcal{T}^b = \alpha^b$ as recurrence form ($\mathcal{T}^b = \alpha^b$ is a closed Pfaffian).

Then the following properties hold:
(i) \mathcal{T} is both a torse forming and an exterior concurrent vector field;
(ii) the structure curvature 2-forms Θ_A^B are exterior recurrent with the closed Pfaffian $2(u + \alpha)$ as recurrence form;
(iii) the manifold M is endowed with a conformal symplectic structure Ω having $u + \alpha$ as covector of Lee;
(iv) the vector field \mathcal{T} defines a relative conformal transformation of Ω, that is, $d\mathcal{L}_\mathcal{T} \Omega = 8t u \wedge \Omega$, where $2t = \|\mathcal{T}\|^2$.

References

I. MIHAI: FACULTY OF MATHEMATICS, STR. ACADEMIEI 14, 70109 BUCHAREST, ROMANIA
E-mail address: imihai@math.math.unibuc.ro

A. OIAGĂ: FACULTY OF MATHEMATICS, STR. ACADEMIEI 14, 70109 BUCHAREST, ROMANIA
E-mail address: adela@geometry.math.unibuc.ro

R. ROSCA: 59 AVENUE EMILE ZOLA, 75015 PARIS, FRANCE
Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often revels the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.otero@usc.es