ON WEAK CENTER GALOIS EXTENSIONS OF RINGS

GEORGE SZETO and LIANYONG XUE

(Received 27 April 2000)

Abstract. Let B be a ring with 1, C the center of B, G a finite automorphism group of B, and B^G the set of elements in B fixed under each element in G. Then, the notion of a center Galois extension of B^G with Galois group G (i.e., C is a Galois algebra over C^G with Galois group $G|_C \cong G$) is generalized to a weak center Galois extension with group G, where B is called a weak center Galois extension with group G if $BI_i = B$ for some idempotent in C and $I_i = \{c - g_i(c) \mid c \in C\}$ for each $g_i \neq 1$ in G. It is shown that B is a weak center Galois extension with group G if and only if for each $g_i \neq 1$ in G there exists an idempotent e_i in C and $\{b_k e_i g_i(c_k e_i) = \delta_{1, g_i} e_i\}$ such that $\sum_{k=1}^m b_k e_i g_i(c_k e_i) = \delta_{1, g_i} e_i$ and g_i restricted to $C(1 - e_i)$ is an identity, and a structure of a weak center Galois extension with group G is also given.

2000 Mathematics Subject Classification. Primary 16S35, 16W20.

1. Introduction. Galois theory for fields was generalized for rings in the sixties and seventies [3, 4, 7, 8]. Let B be a ring with 1, $G = \{g_1 = 1, g_2, \ldots, g_n\}$ an automorphism group of B of order n, C the center of B, and B^G the set of elements in B fixed under each element in G. There are several well-known classes of noncommutative Galois extensions: (1) the DeMeyer-Kanzaki Galois extension B (i.e., B is an Azumaya C-algebra which is a Galois algebra with Galois group $G|_C \cong G$) [3, 7], (2) the H-separable Galois extension B (i.e., B is a Galois and a H-separable extension of B^G) [8], (3) the Azumaya Galois extension B (i.e., B is a Galois extension of B^G which is an Azumaya C^G-algebra) [1], (4) the central Galois algebra [3, 4, 7], and (5) the center Galois extension B (i.e., C is a Galois algebra over C^G with Galois group $G|_C \cong G$) [11]. We note that a commutative Galois extension is a DeMeyer-Kanzaki Galois extension which is a center Galois extension. It is well know that C is a Galois extension of C^G if and only if the ideals generated by $\{c - g(c) \mid c \in C\}$ is C for each $g \neq 1$ in G [2, Proposition 1.2, page 80]. This fact was generalized in [11] to a center Galois extension; that is, B is a center Galois extension of B^G if and only if the ideals of B generated by $\{c - g(c) \mid c \in C\}$ is B, that is, $BI_i = B$, where $I_i = \{c - g_i(c) \mid c \in C\}$ for each $g_i \neq 1$ in G (for more about center Galois extensions, see [5, 6, 9, 10, 11]). Generalizing the condition that $BI_i = B = B1$ to that $BI_i = Be_i$ for some idempotent e_i in C for each $g_i \neq 1$ in G, we obtain a broader class of rings B than the class of center Galois extensions. This class of rings is called weak center Galois extensions. The purpose of the present paper is to give a characterization and a structure of a weak center Galois extension B with group G. We shall show that B is a weak center Galois extension with group G if and only if for each $g_i \neq 1$ in G there exists an idempotent e_i in C and $\{b_k e_i \in Be_i; c_k e_i \in Ce_i, k = 1, 2, \ldots, m\}$ such that $\sum_{k=1}^m b_k e_i g_i(c_k e_i) = \delta_{1, g_i} e_i$.
and g_i restricted to $C(1-e_i)$ is an identity. Next, we call B a T-Galois extension of B^T if there exist elements $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^m a_i g_i(b_i) = \delta_{1,g}$ for $g \in T \cup \{1\}$. We note that T is not necessarily a subgroup of G. Let B be a weak center Galois extension with group G. Then, we show that there exists a partition of $G - \{1\}$, $\{T_j \subset G, j = 1, 2, \ldots, h\}$ for some integer h and some idempotents $e_j \in C, j = 1, 2, \ldots, h$ such that B_{e_j} is a T_j-Galois extension of $(B_{e_j})^{T_j}$. Moreover, when G is abelian, e_j can be taken as orthogonal idempotents in C so that $\sum_{j=1}^h B_{e_j}$ is a direct sum. Furthermore, a sufficient condition is given for the existence of a subgroup $H_j \subset T_j \cup \{1\}$ for $j = 1, 2, \ldots, h$. In this case, B_{e_j} is a H_j-Galois extension of $(B_{e_j})^{H_j}$ with Galois group H_j.

2. Definitions and notation. Throughout this paper, B represents a ring with 1, $G = \{g_1 = 1, g_2, \ldots, g_n\}$ an automorphism group of B of order n for some integer n, C the center of B, and B^G the set of elements in B fixed under each element in G. We denote $I_i = \{c - g_1(c) \mid c \in C\}$ and $B I_i$ the ideal of B generated by I_i for $g_i \in G$.

B is called a G-Galois extension of B^G if there exist elements $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^m a_i g_i(b_i) = \delta_{1,g}$ for $g \in T \cup \{1\}$. Such a set $\{a_i, b_i\}$ is called a G-Galois system for B. B is called a weak center Galois extension of B^G with group G if $B I_i = B_{e_i}$ for some idempotent in C for each $g_i \neq 1$ in G. For a subset T (not necessarily a subgroup) of G, B is called a T-Galois extension of B^T if there exist elements $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^m a_i g_i(b_i) = \delta_{1,g}$ for $g \in T \cup \{1\}$. Such a set $\{a_i, b_i\}$ is called a T-Galois system for B. For a B-module M, we denote $\text{Ann}_B(M) = \{b \in B \mid bm = 0 \text{ for all } m \in M\}$.

3. Weak center Galois extensions. In [11], the present authors showed that a center Galois extension B is equivalent to each of the following statements: (i) $B I_i = B$ for each $g_i \neq 1$ in G and (ii) B is a Galois extension of B^G with a Galois system $\{b_i \in B, c_i \in C, i = 1, 2, \ldots, m\}$ for some integer m. In this section, we generalize this characterization to a weak center Galois extension B with group G. We begin with the following lemma.

Lemma 3.1. If B is a weak center Galois extension with group G, then

1. g_i restricted to B_{e_i} is an automorphism of B_{e_i}.
2. B_{e_i} is a (g_i)-Galois extension of $(B_{e_i})^{[g_i]}$.

Proof. (1) For any $b = \sum_{k=1}^m b_k (c_k - g_i(c_k)) \in B I_i = B_{e_i}$, where $b_k \in B$ and $c_k \in C$, $k = 1, 2, \ldots, m$ for some integer m, we have $g_i(b) = g_i(\sum_{k=1}^m b_k (c_k - g_i(c_k))) = \sum_{k=1}^m g_i(b_k)(g_i(c_k) - g_i(g_i(c_k))) \in B I_i = B_{e_i}$. Hence, $g_i(B_{e_i}) \subset B_{e_i}$. Thus, g_i restricted to B_{e_i} is an automorphism of B_{e_i} since g_i is an automorphism of B.

(2) Since $B I_i = B_{e_i}$, there exist $\{b_k \in B, c_k \in C, k = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{k=1}^m b_k (c_k - g_i(c_k)) = e_i$. Therefore, $\sum_{k=1}^m b_k c_k = e_i + \sum_{k=1}^m b_k g_i(c_k)$. Let $b_{m+1} = -\sum_{k=1}^m b_k g_i(c_k)$ and $c_{m+1} = 1$. Then $\sum_{k=1}^{m+1} b_k c_k = e_i$ and $\sum_{k=1}^{m+1} b_k g_i(c_k) = 0$. Noting that e_i is the identity of B_{e_i} and g_i restricted to B_{e_i} is an automorphism
of B_{e_i}, we have $g_i(e_i) = e_i$. Hence, $\sum_{k=1}^{m+1} b_k e_i g_i(c_k e_i) = \delta_1 g_i e_i$, that is, $\{b_k e_i; c_k e_i, k = 1, 2, \ldots, m + 1\}$ is a $\{g_i\}$-Galois system for B_{e_i}.

The following is an equivalent condition for a weak center Galois extension with group G.

Theorem 3.2. B is a weak center Galois extension with group G (i.e., $B_{l_i} = B_{e_i}$ for some idempotent e_i in C for each $g_i \neq 1$ in G) if and only if for each $g_i \neq 1$ in G there exists an idempotent e_i in C and $\{b_k e_i; c_k e_i \in C_{e_i}, k = 1, 2, \ldots, m\}$ such that

$\sum_{k=1}^{m} b_k e_i g_i(c_k e_i) = \delta_1 g_i e_i$ and g_i restricted to $C(1-e_i)$ is an identity.

Proof. (\Rightarrow) By Lemma 3.1(2), $B_{l_i} (= B_{e_i})$ contains a $\{g_i\}$-Galois system $\{b_k e_i \in B_{e_i}; c_k e_i \in C_{e_i}, k = 1, 2, \ldots, m\}$ such that $\sum_{k=1}^{m} b_k e_i g_i(c_k e_i) = \delta_1 g_i e_i$. Next, we show that g_i restricted to $(1-e_i)$ is an identity. In fact, by Lemma 3.1(1), $g_i(e_i) = e_i$. Hence, for any $c \in C$, $(c - g_i(c(1-e_i))) = (c - g_i(c)) \in C_{e_i} \cap C(1-e_i) = \{0\}$. Thus, $g_i(c(1-e_i)) = c(1-e_i)$ for all $c \in C$. This proves that g_i restricted to $C(1-e_i)$ is an identity.

(\Leftarrow) By hypothesis, for each $g_i \neq 1$ in G there exists an idempotent e_i in C and $\{b_k e_i \in B_{e_i}; c_k e_i \in C_{e_i}, k = 1, 2, \ldots, m\}$ such that $\sum_{k=1}^{m} b_k e_i g_i(c_k e_i) = \delta_1 g_i e_i$. Hence, $e_i = \sum_{k=1}^{m} b_k e_i c_k e_i g_i(c_k e_i) \in B_{l_i}$. Hence, $B_{e_i} \subset B_{l_i}$. But e_i is an idempotent, so $B_{l_i} = B_{e_i} e_i \subset B_{l_i} e_i \subset B_{e_i}$. Thus, $B_{l_i} = B_{e_i} e_i$. Since g_i restricted to $C(1-e_i)$ is an identity, $g_i(c(1-e_i)) = c(1-e_i)$ for all $c \in C$ (in particular, $g_i(e_i) = e_i$). Hence, $c - g_i(c) = c e_i - g_i(c e_i) = (c - g_i(c)) e_i$ for all $c \in C$. This implies that $B_{e_i} = B_{l_i} e_i = B_{l_i}$.

Recall that B is called a T-Galois extension of B^T for a subset T (not necessary a subgroup) of G if B contains a T-Galois system. Next, we give a structure of a weak center Galois extension with group G.

Lemma 3.3. Assume B is a weak center Galois extension with group G. Let $T_j = \{g_i \in G \mid B_{l_i} = B_{e_i}, \text{i.e., } e_i = e_j\}$. Then B_{e_j} is a T_j-Galois extension of $(B_{e_j})^{(1)}$ for each $j \neq 1$.

Proof. By the proof of Lemma 3.1(2), for each $g_i \in T_j$, there is a $\{g_i\}$-Galois system $\{b^{(i)}_{k} e_j; c^{(i)}_{k} e_j, k = 1, 2, \ldots, m_i\}$ for B_{e_j}, where $b^{(i)}_{k} \in B$ and $c^{(i)}_{k} \in C$, $k = 1, 2, \ldots, m_i$, for some integer m_i. Denote the elements in T_j by $\{g_{i_1}, g_{i_2}, \ldots, g_{i_t}\}$ for some integer t. Let

$\sum_{k_1=1}^{m_{i_1}} \sum_{k_2=1}^{m_{i_2}} \cdots \sum_{k_t=1}^{m_{i_t}} b^{(i_{k_1})}_{k_1} b^{(i_{k_2})}_{k_2} \cdots b^{(i_{k_t})}_{k_t} e_j$ and $c^{(i_{k_1})}_{k_1} c^{(i_{k_2})}_{k_2} \cdots c^{(i_{k_t})}_{k_t} e_j$ for $k_l = 1, 2, \ldots, m_{i_l}$ and $l = 1, 2, \ldots, t$. Noting that $c^{(i_l)}_{k_l} \in C$, $l = 1, 2, \ldots, t$, we have

$$
\begin{align*}
\sum_{k_1=1}^{m_{i_1}} \sum_{k_2=1}^{m_{i_2}} \cdots \sum_{k_t=1}^{m_{i_t}} b^{(i)}_{k_1} b^{(i)}_{k_2} \cdots b^{(i)}_{k_t} e_j & \left(c^{(i)}_{k_1} c^{(i)}_{k_2} \cdots c^{(i)}_{k_t} e_j \right) \\
= \sum_{k_1=1}^{m_{i_1}} \sum_{k_2=1}^{m_{i_2}} \sum_{k_1=1}^{m_{i_t}} \left(b^{(i_{k_1})}_{k_1} b^{(i_{k_2})}_{k_2} \cdots b^{(i_{k_t})}_{k_t} e_j \right) \\
= \sum_{k_1=1}^{m_{i_1}} \left(b^{(i)}_{k_1} e_j \right) \\
= e_j,
\end{align*}
$$

(3.1)
and, for each \(g_i \in T_j, \)

\[
\sum_{k_1=1}^{m_{i_1}} \sum_{k_2=1}^{m_{i_2}} \cdots \sum_{k_t=1}^{m_{i_t}} b_{k_1,k_2,\ldots,k_t} g_i(c_{k_1,k_2,\ldots,k_t}) \\
= \sum_{k_1=1}^{m_{i_1}} \sum_{k_2=1}^{m_{i_2}} \cdots \sum_{k_t=1}^{m_{i_t}} (b_{k_1}^{(i_1)} b_{k_2}^{(i_2)} \cdots b_{k_t}^{(i_t)}) g_i(c_{k_1}^{(i_1)} c_{k_2}^{(i_2)} \cdots c_{k_t}^{(i_t)}) e_j \\
= \sum_{k_1=1}^{m_{i_1}} (b_{k_1}^{(i_1)}) g_i(c_{k_1}^{(i_1)}) e_j \\
\sum_{k_2=1}^{m_{i_2}} (b_{k_2}^{(i_2)}) g_i(c_{k_2}^{(i_2)}) e_j \\
\cdots \\
\sum_{k_t=1}^{m_{i_t}} (b_{k_t}^{(i_t)}) g_i(c_{k_t}^{(i_t)}) e_j \\
= 0.
\]

Thus, \(\{b_{k_1,k_2,\ldots,k_t} c_{k_1,k_2,\ldots,k_t}, k_t = 1,2,\ldots, m_{i_t} \text{ and } l = 1,2,\ldots,t \} \) is a \(T_j \)-Galois system for \(B e_j \). This completes the proof. \(\square \)

Theorem 3.4. If \(B \) is a weak center Galois extension with group \(G \), then there exists a partition \(\{T_j \subset G, j = 1,2,\ldots,m \} \) of \(G - \{1\} \) and a finite set of central idempotents \(\{e'_i \mid i = 1,2,\ldots,m \} \) such that (1) \(B e'_j \) is a \(T_j \)-Galois extension of \((Be'_j)^T_j \), (2) \(B = \sum_{j=1}^{m} Be'_j \oplus B(1 - \vee_{j=1}^{m} e'_j) \), where \(\vee_{j=1}^{m} e'_j \) is the sum of \(e'_1, e'_2,\ldots,e'_m \) in the Boolean algebra of all idempotents in \(C \), and (3) \(G|_{C(1-\vee_{j=1}^{m} e'_j)} = \{1\} \).

Proof. (1) Since \(BI_i = Be_i \) for some idempotent \(e_i \) in \(C \) for each \(g_i \neq 1 \) in \(G \), we have a set of central idempotents \(\{e_i \mid g_i \neq 1 \} \) in \(G \). Let \(E = \{e'_j \mid j = 1,2,\ldots,m \} \) be the set of all distinct idempotents in \(\{e_i \mid g_i \neq 1 \} \) and let \(T_j = \{g_i \in G \mid BI_i = Be'_j \} \), i.e., \(e_i = e'_j \). Then \(Be'_j \) is a \(T_j \)-Galois extension of \((Be'_j)^T_j \) for each \(j = 1,2,\ldots,m \) by Lemma 3.3. Moreover, since \(E = \{e'_j \mid j = 1,2,\ldots,m \} \) is the set of all distinct idempotents in \(\{e_i \mid BI_i = Be_i \} \) for \(g_i \neq 1 \) in \(G \), it is easy to see that \(T_i \cap T_j = \emptyset \), the empty set for \(i \neq j \) and that \(\bigcup_{j=1}^{m} T_j = G - \{1\} \), that is, \(\{T_j \subset G, j = 1,2,\ldots,m \} \) is a partition of \(G - \{1\} \).

Part (2) is an immediate consequence of part (1), and Theorem 3.2 implies part (3).

We remark that the partition of \(G - \{1\} \), \(\{T_j \subset G, j = 1,2,\ldots,m \} \) is determined by the set of all distinct idempotents in \(\{e_i \mid BI_i = Be_i \} \) for \(g_i \neq 1 \) in \(G \). \(\square \)

When \(G \) is abelian, we obtain a stronger structure of a weak center Galois extension with group \(G \).

Lemma 3.5. Assume that \(B \) is a weak center Galois extension with group \(G \). If \(G \) is abelian, then \(g_j(e_i) = e_i \) for all \(i,j = 2,3,\ldots,n \).

Proof. For any \(c - g_i(c) \in I_i, g_j(c - g_i(c)) = g_j(c) - g_i(g_j(c)) \in I_i \). Hence, \(g_j(BI_i) \subset BI_i \). Thus, \(g_j \) restricted to \(BI_i (= Be_i) \) is an automorphism of \(Be_i \) since \(g_j \) is an automorphism of \(B \). Therefore, \(g_j(e_i) = e_i \). \(\square \)

Theorem 3.6. Assume that \(B \) is a weak center Galois extension with group \(G \). If \(G \) is abelian, then there exist orthogonal idempotents \(\{f_i \mid i = 1,2,\ldots,p \} \) for some integer \(p \) and some subset \(T^{(i)} \) of \(G, i = 1,2,\ldots,p \) such that \(B = \oplus_{i=1}^{p} B f_i \oplus B(1 - \vee_{i=1}^{p} f_i) \), where \(\vee_{i=1}^{p} f_i \) is the sum of \(f_1,f_2,\ldots,f_p \) in the Boolean algebra of all idempotents in \(C \) and \(B f_i \) is a \(T^{(i)} \)-Galois extension of \((B f_i)^{T^{(i)}} \) for \(i = 1,2,\ldots,p \).
Proof. By Theorem 3.4, there exists a set of distinct idempotents $E = \{e'_j \mid j = 1, 2, \ldots, m\}$ in C and a partition $\{T_j \mid j = 1, 2, \ldots, m\}$ of $G - \{1\}$ such that $B e'_j$ is a T_j-Galois extension of $(B e'_j)^{T_j}$ for $j = 1, 2, \ldots, m$. Now, let S be the Boolean subalgebra generated by E with all nonzero minimal elements f_1, f_2, \ldots, f_p in S. Then, it is easy to see that $f_i f_j = 0$ for $i \neq j$, and so f_1, f_2, \ldots, f_p are orthogonal idempotents in C. For each f_i, $i = 1, 2, \ldots, p$, $f_i = e'_j_1 e'_j_2 \cdots e'_j_p$. By Theorem 3.4, $B e'_j$ is a T_j-Galois extension of $(B e'_j)^{T_j}$ for each $l = 1, 2, \ldots, p_i$ with a T_j-Galois system $\{b_{l1}^{(i)} e_{j_1}' \cdots e_{j_p}' \mid b_{l1}^{(i)} \in C, j_1, \ldots, j_p \}$ of $\cup_{i=1}^p B e'_i$. Hence, by using the same patching method as given in Lemma 3.3, $\{b_{l1}^{(i)} b_{l2}^{(i)} \cdots b_{lp_i}^{(i)} f_i \mid c_{l1}, \ldots, c_{lp_i} \in C\}$ is a T_j-Galois system for $B f_i$, where $T_j = \cup_{i=1}^p T_{jl}$, and T_{jl} is a T_j-Galois extension of $(B f_i)^{T_j}$ for $i = 1, 2, \ldots, p$ and $\{f_1, f_2, \ldots, f_p\}$ is a set of orthogonal idempotents in C.

4. **Special cases.** We note that the T_i’s in Theorem 3.4 and $T^{(i)}$’s in Theorem 3.6 may not be subgroups of G. Next, we give a sufficient condition for each $T_i \cup \{1\} \subset G$ containing a subgroup H_i so that $B e_i$ is a H_i-Galois extension of $(B e_i)^{H_i}$ with Galois group H_i. Consequently, $B e_i$ becomes a center Galois extension of $(B e_i)^{H_i}$ with Galois group H_i, and B is a center Galois extension of G with Galois group G if $e_i = 1$ for all $g_i \neq 1$. We first show a relation between $B(1 - e_p)$, $B(1 - e_q)$, and $B(1 - e_t)$, where $g_p g_q = g_t \in G$.

Lemma 4.1. Let $J_l = \{b \in B \mid bc = g_t(c)b \text{ for all } c \in C\}$ for each $g_t \in G$. Then, $J_p J_q \subset J_t$ if $g_p g_q = g_t \in G$.

Proof. Let $a \in J_p$ and $b \in J_q$. Then, for any $c \in C$, $(a b)c = a g_q(c)b = g_p(g_q(c))a b = g_t(c)(a b)$, where $g_p g_q = g_t$. Hence, $ab \in J_t$. Thus, $J_p J_q \subset J_t$.

Corollary 4.2. If B is a weak center Galois extension with group G, then $B(1 - e_p)B(1 - e_q) \subset B(1 - e_t)$, where $g_p g_q = g_t \in G$.

Proof. Since B is a weak center Galois extension with group G, $B I_l = B e_i$ for some idempotent e_i in C for each $g_i \neq 1$ in G. But $I_l = \{c - g_t(c) \mid c \in C\}$, so $J_l = \{b \in B \mid b (c - g_t(c)) = 0 \text{ for all } c \in C\}$. Hence, $J_l = \text{Ann}_B(I_l) = \text{Ann}_B(B I_l) = \text{Ann}_B(B e_i) = B(1 - e_t)$. Thus, by Lemma 4.1, we have $B(1 - e_p)B(1 - e_q) \subset B(1 - e_t)$, where $g_p g_q = g_t \in G$.

Theorem 4.3. Assume that B is a weak center Galois extension with group G. Let T_i, for each $i = 2, 3, \ldots, n$, be the subset of G as given in Theorem 3.4 such that $B e_i$ is a T_i-Galois extension of $(B e_i)^{T_i}$, the Boolean subalgebra generated by $\{e_i \mid g_i \neq 1 \text{ in } G\}$ with all nonzero minimal elements $\{f_1, f_2, \ldots, f_k\}$ in S, and $H_j = \{1\} \cup \{g_i \in G \mid e_i f_j = f_j \text{ and } e_i f_l = 0 \text{ for all } l \neq j\}$. Then, H_j is a subgroup of G for each $j = 1, 2, \ldots, k$ such that $g_i(f_j) = f_j$ for each $g_i \in H_j$.

Proof. (1) For any g_p and g_q in H_j, let $g_p g_q = g_t$ for some $g_t \in G$. We claim that $g_t \in H_j$ if $g_t \neq 1$. Since $g_t \neq 1$, $B I_l = B e_i$ for some idempotent $e_i \neq 0$ in C. By Corollary 4.2, $B(1 - e_p)B(1 - e_q) \subset B(1 - e_t)$. Therefore, in the Boolean algebra of all
idempotents in C with operations \land, \lor, complement, and the relation $<, (1 - e_p)(1 - e_q) < (1 - e_t)$. So $e_t < e_p \lor e_q = e_p + e_q - e_pe_q$. Thus, $e_t = e_t(e_p + e_q - e_pe_q)$. Since $g_p, g_q \in H_j, e_p, f_i = 0$ and $e_q, f_i = 0$ for all $l \neq j$. Hence, $e_t, f_i = e_t(e_p + e_q - e_pe_q) f_i = 0$ for all $l \neq j$. Moreover, since S is the Boolean subalgebra generated by $\{e_t | g_i \neq 1 \in G\}$, there is at least one nonzero minimal element in S less than e_t. But $e_t, f_i = 0$ for all $l \neq j$, so f_j must be less than e_t. Hence, $e_t, f_j = f_j$. Thus, $g_t(=g_p, g_q) \in H_j$, and so H_j is a subgroup of G. Moreover, suppose $g_i \in H_j$. Then $e_t, f_j = f_j$ and $e_t, f_i = 0$ for all $l \neq j$. Hence, e_t is greater than f_j, but not greater than f_i for all $l \neq j$. Since $g_i(e_t) = e_t, g_i(f_j)$ is a nonzero minimal element in S less than e_t. Thus, $g_i(f_j) = f_j$. □

Corollary 4.4. Keeping the notation in Theorem 4.3, if $H_j \neq \{1\}$ for $j = 1, 2, \ldots, p$, then $B = \sum_{j=1}^p B(f_j) \oplus B(1 - \lor_{j=1}^p f_j)$, where $\lor_{j=1}^p f_j$ is the sum of f_1, f_2, \ldots, f_p in the Boolean algebra of all idempotents in C, such that $B(f_j)$ is a H_j-Galois extension of $(B f_j)^{H_j}$ with Galois group H_j for $j = 1, 2, \ldots, p$.

Corollary 4.5. If $B_{1j} = B$ for each $g_j \neq 1$ in G, then B is a center Galois extension of B^G with Galois group G.

Proof. Since $e_0 = e_1 = \ldots = e_n$, $T_1 = T_2 = \ldots = T_n = G - \{1\}$, so $T_i \cup \{1\} = G$. Thus, B is a Galois extension of B^G with a Galois system $\{b_i \in B; c_i \in C, i = 1, 2, \ldots, m\}$ for some integer m, that is, B is a center Galois extension of B^G with Galois group G. □

If the order of each nonidentity element in G has order 2 (hence, G is abelian), the following theorem shows that $T_i \cup \{1\}$ contains a subgroup of G for each $g_j \neq 1$ in T_i.

Theorem 4.6. Assume that B is a weak center Galois extension with group G. If each nonidentity element g_i in G has order 2, then T_i contains a subgroup of H_i of order 2 for each $g_j \neq 1$ in G such that $B e_i$ is a H_i-Galois extension of $(B e_i)^{H_i}$ with Galois group H_i.

Proof. Let $B_{1i} = B e_i$ for $g_i \neq 1$ in G. Then $H_i = \{1, g_i\}$ is a subgroup contained in $T_i \cup \{1\}$, where $T_i = \{g_k \in G | B_{1k} = B e_i\}$ as defined in Theorem 3.4. Since $B e_i$ is a T_i-Galois extension of $(B e_i)^{T_i}$, $B e_i$ is a H_i-Galois extension of $(B e_i)^{H_i}$ with Galois group H_i. □

Theorem 3.4 shows that a weak center Galois extension is a sum of T_i-Galois extensions for some $T_i \subset G$ and Theorem 4.6 states a weak center Galois extension as a direct sum of center Galois extensions. The following is an example of a weak center Galois extension with group G as given in Theorem 4.6, but not a Galois extension.

Example 4.7. Let \mathbb{Q} be the rational field, $B = \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q}$, and $G = \{g_1 = 1, g_2, g_3, g_4 = g_2 g_3\}$ such that $g_2(a_1, a_2, a_3, a_4, a_5) = (a_1, a_3, a_4, a_5)$ and $g_3(a_1, a_2, a_3, a_4, a_5) = (a_1, a_2, a_4, a_3, a_5)$ for all $(a_1, a_2, a_3, a_4, a_5) \in B$. Then,

1. $B_{1i} = B e_i$ for each $g_i \neq 1$ in G, where $e_2 = (1, 1, 0, 0, 0), e_3 = (0, 0, 1, 1, 0), \text{ and } e_4 = (1, 1, 1, 1, 0)$. Hence, B is a weak center Galois extension with group G.

2. B is not a Galois extension since G restricted to $\{(0, 0, 0, 0, a) | a \in \mathbb{Q}\}$ is identity.

3. Let $H_i = \{1, g_i\}, i = 2, 3, 4$. Then H_i is a subgroup of G of order 2. Moreover, $B_{12} = B e_2$ is a center H_2-Galois extension of $(B e_2)^{H_2}$ with Galois system $\{b_1 = (1, 0, 0, 0, 0), b_2 = (0, 1, 0, 0, 0); c_1 = (1, 0, 0, 0, 0), c_2 = (0, 1, 0, 0, 0)\}, B_{13} = B e_3$ is a center H_3-Galois extension of $(B e_3)^{H_3}$ with Galois system $\{b_1 = (0, 0, 1, 0, 0), b_2 = (0, 0, 0, 1, 0); c_1 = (0, 0, 1, 0, 0), c_2 = (0, 1, 0, 0, 0)\}$,
1,0,0), c_2 = (0,0,0,1,0)), and Bf_4 = B_{e_4} is a center H_4-Galois extension of $(B_{e_4})^{H_4}$ with Galois system $\{b_1 = (1,0,0,0,0), b_2 = (0,1,0,0,0), b_3 = (0,0,1,0,0), b_4 = (0,0,0,1,0); c_1 = (1,0,0,0,0), c_2 = (0,1,0,0,0), c_3 = (0,0,1,0,0), c_4 = (0,0,0,1,0)\}.

(4) $S = \{0 = (0,0,0,0,0), e_2, e_3, e_4, 1 = (1,1,1,1,1)\}$ is the Boolean subalgebra generated by $E = \{e_2, e_3, e_4\}$ in the Boolean algebra of all idempotents in the center of B. The minimal elements in S are $f_1 = e_2$ and $f_2 = e_3$, and $f_1 \vee f_2 = e_4$. We have that $Bf_1 = \{(a_1, a_2, 0, 0, 0) | a_1, a_2 \in \mathbb{Q}\}$, $Bf_2 = \{(0, 0, 0, 0, 0) | a_3, a_4 \in \mathbb{Q}\}$, and $B(1 - f_1 \vee f_2) = \{(0, 0, 0, 0, 0) | a_5 \in \mathbb{Q}\}$. So $B = Bf_1 \oplus Bf_2 \oplus B(1 - f_1 \vee f_2)$ and Bf_j is a H_j-Galois extension of $(Bf_j)^{H_j}$ for $j = 1, 2$.

(5) Since $e_2 = (1,1,0,0,0), e_3 = (0,0,1,1,0), and e_4 = (1,1,1,1,0)$, we have $C(1 - e_2) = \{(0,0,a_3,a_4,a_5) | a_3,a_4,a_5 \in \mathbb{Q}\}, C(1 - e_3) = \{(a_1,a_2,0,0,a_5) | a_1,a_2,a_5 \in \mathbb{Q}\}, and C(1 - e_4) = \{(0,0,0,0,a_5) | a_5 \in \mathbb{Q}\}$. So g_i restricted to $C(1 - e_i)$ is an identity for each $g_i \neq 1$ in G.

REFERENCES

GEORGE SZETO: MATHEMATICS DEPARTMENT, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA E-mail address: szeto@hilltop.bradley.edu
LIANYONG XUE: MATHEMATICS DEPARTMENT, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA E-mail address: lxue@hilltop.bradley.edu
Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>February 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk