STRONG UNIQUE CONTINUATION OF EIGENFUNCTIONS FOR p-LAPLACIAN OPERATOR

ISLAM EDDINE HADI and N. TSOU LI

(Received 28 January 2000)

Abstract. We show the strong unique continuation property of the eigenfunctions for p-Laplacian operator in the case $p < N$.

2000 Mathematics Subject Classification. Primary 35J15.

1. Introduction. This paper is primarily concerned with the problem:

$$-\text{div}(|\nabla u|^{p-2}\nabla u) + V|u|^{p-2}u = 0 \text{ in } \Omega,$$

(1.1)

where Ω is a bounded domain in \mathbb{R}^N and the weight functions V is assumed to be not equivalent to zero and to lie in $L^{N/p}(\Omega)$.

Also, we know that the unique continuation property is defined by a different form. In this work, we are interested to study a family of functions which enjoys the strong unique continuation property (SUCP), that is, functions besides possibly the zero functions has a zero of infinite order.

Definition 1.1. A function $u \in L^p(\Omega)$ has a zero of infinite order in p-mean at $x_0 \in \Omega$, if for each $n \in \mathbb{N}$,

$$\int_{|x-x_0| \leq R} |u|^p = 0(\mathbb{R}^n) \text{ as } R \to 0.$$

(1.2)

There is an extensive literature on unique continuation. We refer to the work of Jerison-Kenig on the unique continuation for Shrödinger operators (cf. [3]). The same work is done by Gossez and Figueiredo, but for linear elliptic operator in the case $V \in L^{N/2}$, where $N > 2$, (cf. [1]). Also, Loulit extended this property to $N = 2$ by introducing Orlicz’s space, (cf. [2, 5]). In this work, we generalize this property for the p-Laplacian in the case $V \in L^{N/p}(\Omega)$ and $p < N$.

2. Strong unique continuation theorem. In this section, we proceed to establish the strong unique continuation property of the eigenfunctions for the p-Laplacian operator in the case $V \in L^{N/p}(\Omega)$ and $p < N$.

Theorem 2.1. Let $u \in W^{1,p}_{\text{loc}}(\Omega)$ solution of (1.1). If $u = 0$ on a set E of positive measure, then u has a zero of infinite order in p-mean.
To prove this theorem we need the following lemmas.

Lemma 2.2. Let \(g \in W^{1,p}_0(\Omega) \) and \(V \in L^{N/p} \). Then for each \(\epsilon > 0 \) there exists a positive constant \(k_\epsilon \) such that

\[
\int_\Omega V|g|^p \leq \epsilon \int_\Omega |\nabla g|^p + k_\epsilon \int_\Omega |g|^p. \tag{2.1}
\]

Proof. Set \(G = \{ x \in \Omega : V(x) \geq c \} \).

So

\[
\int_\Omega V|g|^p \leq \int_G V|g|^p + k \int_\Omega |g|^p. \tag{2.3}
\]

By using the Hölder and Poincaré’s inequalities, we get

\[
\int_\Omega V|g|^p \leq c \| \chi_G V \|_{L^\infty} \int_\Omega |\nabla g|^p + k \int_\Omega |g|^p. \tag{2.4}
\]

But \(\| \cdot \| \) is absolutely continuous. So, given \(\epsilon > 0 \), there exists \(k \) such that \(c \| \chi_G V \| \leq \epsilon \).

Which gives immediately the inequality (2.1). \(\square \)

Lemma 2.3. Let \(B_r \) and \(B_{2r} \) be two concentric balls contained in \(\Omega \). Then

\[
\int_{B_r} |\nabla u|^p \leq \frac{c}{r^p} \int_{B_{2r}} |u|^p, \tag{2.5}
\]

where the constant \(c \) does not depend on \(r \).

Proof. Take \(\varphi \in C_0^\infty(\Omega) \), with \(\text{supp} \varphi \subset B_{2r}, \varphi(x) = 1 \) for \(x \in B_r \) and \(|\nabla \varphi| \leq c/r \).

Using \(\varphi^p u \) as a test function in (1.1), we get

\[
\int_{B_{2r}} -\text{div}(|\nabla u|^{p-2} \nabla u) \varphi^p u + \int_{B_{2r}} V|u|^{p-2} u \varphi^p u = 0. \tag{2.6}
\]

So

\[
\int_{B_{2r}} |\nabla u|^p \varphi^p = -p \int_{B_{2r}} |\nabla u|^{p-2} \varphi^p \nabla \varphi \cdot \nabla (\varphi u) - \int_{B_{2r}} V|\varphi u|^p. \tag{2.7}
\]

Using Young’s inequalities for \((((p-1)/p) + 1/p = 1)\), we can estimate the first integral in the right-hand side of (2.7) by

\[
(p-1)\epsilon^{p/(p-1)} \int_{B_{2r}} |\nabla u|^p \varphi + \epsilon^{-p} \int_{B_{2r}} |\nabla \varphi|^p |u|^p. \tag{2.8}
\]

Also by the result of Lemma 2.2, we can estimate the second integral in the right-hand side of (2.7) by

\[
\epsilon \int_{B_{2r}} |\nabla (\varphi u)|^p + c \epsilon \int_{B_{2r}} |\varphi u|^p. \tag{2.9}
\]

Using these estimates in (2.7), we have

\[
\int_{B_{2r}} |\nabla u|^p \varphi \leq ((p-1)\epsilon^{p/(p-1)} + \epsilon) \int_{B_{2r}} |\nabla u|^p |\varphi|^p + (\epsilon^{-p} + \epsilon) \int_{B_{2r}} |u|^p |\nabla \varphi|^p + c \epsilon \int_{B_{2r}} |u|^p |\varphi|^p. \tag{2.10}
\]

Using the fact that \(|\nabla \varphi| \leq c/r, |\varphi| \leq c/r, \text{ and } \varphi = 1 \) in \(B_r \), we have immediately inequality (2.5). \(\square \)
Lemma 2.4. Let \(u \in W^{1,1}(B_r) \), where \(B_r \) is the ball of radius \(r \) in \(\mathbb{R}^N \) and let \(E = \{ x \in B_r : u(x) = 0 \} \). Then there exists a constant \(\beta \) depending only on \(N \) such that

\[
\int_A |u| \leq \beta \frac{r^N}{|E|^{1/N}} \int_{B_r} |\nabla u|
\]

(2.11)

for all ball \(B_r \), \(u \) as above and all measurable sets \(A \subset B_r \).

To prove this lemma see [4].

Proof of Theorem 2.1. We know that almost every point of \(E \) is a point of density of \(E \). Let \(x_0 \in E \) be such a point. This means that

\[
\lim_{r \to 0} \frac{|E \cap B_r|}{|B_r|} = 1,
\]

(2.12)

where \(B_r \) denotes the ball of radius \(r \) centered at \(x_0 \) and \(|S| \) denotes the Lebesgue measure of a set \(S \). So, given \(\epsilon > 0 \) there is an \(r_0 = r_0(\epsilon) \) such that

\[
\frac{|E^c \cap B_r|}{|B_r|} < \epsilon, \quad \frac{|E \cap B_r|}{|B_r|} > 1 - \epsilon \quad \text{for} \quad r \leq r_0,
\]

(2.13)

where \(E^c \) denotes the complement of the set \(E \). Taking \(r_0 \) smaller, if necessary, we can assume \(B_{r_0} \subset \Omega \). Since \(u = 0 \) on \(E \), by Lemma 2.4 and (2.13) we have

\[
\int_{B_r} |u|^p = \int_{B_r \cap E^c} |u|^p \leq \beta \frac{r^N}{|E \cap B_r|} |E^c \cap B_r|^{1/N} \int_{B_r} |\nabla (u)^p| \leq p \beta \frac{r^N}{|B_r|^{(1-1/N)}} \frac{e^{1/N}}{1-\epsilon} \int_{B_r} |u|^{p-1} |\nabla u|.
\]

(2.14)

By Hölder’s inequality

\[
\int_{B_r} |u|^p \leq c \frac{e^{1/N}}{1-\epsilon} r \left(\int_{B_r} |\nabla u|^p \right)^{1/p} \left(\int_{B_r} |u|^p \right)^{(p-1)/p},
\]

(2.15)

and by using the Young’s inequality, we get

\[
\int_{B_r} |u|^p \leq c \frac{e^{1/N}}{1-\epsilon} r \left(r^{p-1} \int_{B_r} |\nabla u|^p + \frac{p-1}{r} \int_{B_r} |u|^p \right).
\]

(2.16)

Finally, by Lemma 2.3, we have

\[
\int_{B_r} |u|^p \leq c \frac{e^{1/N}}{1-\epsilon} \int_{B_{2r}} |u|^p,
\]

(2.17)

where \(c \) is independent of \(\epsilon \) and of \(r \) as \(r \to 0 \).
Now let us introduce the following functions:
\[f(r) = \int_{B_r} |u|^p. \quad (2.18) \]

And let us fix \(n \in \mathbb{N} \), choose \(\epsilon > 0 \) such that \((c\epsilon^{1/N})/(1-\epsilon) \leq 2^{-n} \). Observe that consequently \(r_0 \) depends on \(n \). Then (2.17) can be written as
\[f(r) \leq 2^{-n} f(2r) \quad \text{for} \quad r \leq r_0. \quad (2.19) \]

Iterating (2.19), we get
\[f(\rho) \leq 2^{-kn} f(2^k \rho), \quad \text{if} \quad 2^{k-1} \rho \leq r_0. \quad (2.20) \]

Now given \(0 < r < r_0(n) \) and choose \(k \in \mathbb{N} \) such that
\[2^{-k} r_0 \leq r \leq 2^{-k+1} r_0. \quad (2.21) \]

From (2.20), we obtain
\[f(r) \leq 2^{-kn} f(2^k r) \leq 2^{-kn} f(2r_0). \quad (2.22) \]

Since \(2^{-k} \leq r/r_0 \), we finally obtain
\[f(r) \leq \left(\frac{r}{r_0} \right)^n f(2r_0), \quad (2.23) \]

which shows that \(x_0 \) is a zero infinite order in \(p \)-mean. \(\Box \)

REFERENCES

Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie