A SUBORDINATION THEOREM FOR SPIRALLIKE FUNCTIONS

SUKHJIT SINGH

(Received 24 November 1999)

ABSTRACT. We prove a subordination relation for a subclass of the class of \(\lambda \)-spirallike functions.

Keywords and phrases. Convex function, spirallike function, subordinating factor sequence.

2000 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.

1. Introduction. Let \(K \) denote the usual class of convex functions. Denote by \(S_p(\lambda) \), \(-\pi/2 < \lambda < \pi/2 \), the class of functions \(f(z) = z + a_2 z^2 + \cdots \) which are analytic in \(E \) and satisfy therein the condition

\[
\Re \left[e^{i\lambda} \frac{zf'(z)}{f(z)} \right] > 0. \quad (1.1)
\]

Spacek [3] proved that members of \(S_p(\lambda) \), known as \(\lambda \)-spirallike functions, are univalent in \(E \). In 1989, Silverman [2] proved that if

\[
\sum_{n=2}^{\infty} [1 + (n - 1) \sec \lambda] |a_n| \leq 1 \quad (|\lambda| < \frac{\pi}{2}),
\]

then the function \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) belongs to \(S_p(\lambda) \). Let us denote by \(G(\lambda) \), the class of function \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) whose coefficients satisfy the condition (1.2). Note that \(G(0) \) is a subclass of the class of starlike functions (with respect to the origin) (see Silverman [1]).

In this paper, we prove a subordination theorem for the class \(G(\lambda) \). To state and prove our main result we need the following definitions and lemma.

Definition 1.1. If \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \) are analytic in \(|z| < r \), then their Hadamard product/convolution, \(f \ast g \) is the function defined by the power series

\[
(f \ast g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n. \quad (1.3)
\]

The function \(f \ast g \) is also analytic in \(|z| < r \).

Definition 1.2. Let \(f \) be analytic in \(E \), \(g \) analytic and univalent in \(E \) and \(f(0) = g(0) \). Then by the symbol \(f(z) \prec g(z) \) (\(f \) subordinate to \(g \)) in \(E \), we shall mean that \(f(E) \subset g(E) \).
Definition 1.3. A sequence \(\{ b_n \}^\infty_1 \) of complex numbers is said to be a subordinating factor sequence if whenever \(f(z) = \sum^\infty_k a_k z^k \), \(a_1 = 1 \) is regular, univalent and convex in \(E \), we have

\[
\sum^\infty_k b_k a_k z^k \prec f(z) \quad \text{in } E.
\] (1.4)

Lemma 1.4. The sequence \(\{ b_n \}^\infty_1 \) is a subordinating factor sequence if and only if

\[
\Re \left[1 + 2 \sum^\infty_n b_n z^n \right] > 0, \quad (z \in E).
\] (1.5)

This lemma which gives a beautiful characterisation of a subordinating factor sequence is due to Wilf [4].

2. Main theorem

Theorem 2.1. Let \(f \in G(\lambda) \). Then

\[
\frac{1 + \sec \lambda}{2(2 + \sec \lambda)} (f \ast g)(z) < g(z), \quad (z \in E)
\] (2.1)

for every function \(g \) in the class \(K \).

In particular

\[
\Re f(z) > -\frac{2 + \sec \lambda}{(1 + \sec \lambda)}, \quad (z \in E).
\] (2.2)

The constant \((1 + \sec \lambda)/2(2 + \sec \lambda) \) cannot be replaced by any larger one.

Taking \(\lambda = 0 \), we obtain the following corollary.

Corollary 2.2. If \(f(z) = z + a_2 z^2 + \cdots \) is regular in \(E \) and satisfies therein the condition

\[
\sum^\infty n |a_n| \leq 1,
\] (2.3)

then for every function \(g \) in \(K \), we have

\[
\frac{1}{3} (f \ast g)(z) < g(z), \quad (|z| < 1).
\] (2.4)

In particular, \(\Re f(z) > -3/2, \ z \in E \). The constant 1/3 is best possible.

Proof of Theorem 2.1. Let \(f(z) = z + \sum^\infty_{n=2} a_n z^n \) be any member of the class \(G(\lambda) \) and let \(g(z) = z + \sum^\infty_{n=2} c_n z^n \) be any function in the class \(K \). Then

\[
\frac{1 + \sec \lambda}{2(2 + \sec \lambda)} (f \ast g)(z) = \frac{1 + \sec \lambda}{2(2 + \sec \lambda)} \left(z + \sum^\infty_{n=2} a_n c_n z^n \right).
\] (2.5)

Thus, by Definition 1.3, the assertion of our theorem will hold if the sequence

\[
\left(\frac{(1 + \sec \lambda) a_n}{2(2 + \sec \lambda)} \right)^n
\] (2.6)

is a subordinating factor sequence, with \(a_1 = 1 \). In view of the lemma, this will be the
case if and only if
\[
\text{Re} \left[1 + 2 \sum_{n=1}^{\infty} \frac{1 + \sec \lambda}{2(2 + \sec \lambda)} a_n z^n \right] > 0, \quad (z \in E). \tag{2.7}
\]

Now
\[
\text{Re} \left[1 + \frac{1 + \sec \lambda}{2 + \sec \lambda} \sum_{n=1}^{\infty} a_n z^n \right] = \text{Re} \left[1 + \frac{1 + \sec \lambda}{2 + \sec \lambda} z + \frac{1}{2 + \sec \lambda} \sum_{n=2}^{\infty} (1 + \sec \lambda) a_n z^n \right] > \left[1 - \frac{1 + \sec \lambda}{2 + \sec \lambda} r - \frac{1}{2 + \sec \lambda} \sum_{n=2}^{\infty} (1 + (n-1) \sec \lambda) |a_n| r^n \right] (|z| = r) \tag{2.8}
\]
(because \(1 + \sec \lambda \leq 1 + (n-1) \sec \lambda\) for all \(n \geq 2\), \(|\lambda| < \pi/2\))
\[
> \left[1 - \frac{1 + \sec \lambda}{2 + \sec \lambda} r - \frac{1}{2 + \sec \lambda} r \right] (|z| = r) > 0.
\]

Thus (2.7) holds true in \(E\). This proves the first assertion. That \(\text{Re} f(z) > -(2 + \sec \lambda)/(1 + \sec \lambda)\) for \(f \in G(\lambda)\) follows by taking \(g(z) = z/(1-z)\) in (2.1). To prove the sharpness of the constant \((1 + \sec \lambda)/2(2 + \sec \lambda)\), we consider the function \(f_0\) defined by \(f_0(z) = z - (1/(1 + \sec \lambda)) z^2\) (\(|\lambda| < \pi/2\)), which is a member of the class \(G(\lambda)\). Thus from the relation (2.1) we obtain
\[
\frac{1 + \sec \lambda}{2(2 + \sec \lambda)} f_0(z) < \frac{z}{1-z}. \tag{2.9}
\]
It can be easily verified that
\[
\min_{|z| \leq 1} \text{Re} \left[\frac{1 + \sec \lambda}{2(2 + \sec \lambda)} f_0(z) \right] = -\frac{1}{2}. \tag{2.10}
\]
This shows that the constant \((1 + \sec \lambda)/2(2 + \sec \lambda)\) is best possible.

Acknowledgement. This paper was presented at the 62nd annual conference of the Indian Mathematical Society held at IIT, Kanpur from December 22–25, 1996.

The author is thankful to Prof. Ram Singh, Department of Mathematics, Punjabi University, Patiala, for his help and encouragement during this work.

References

Sukhjit Singh: Department of Mathematics, Sant Longowal Institute of Engineering & Technology, Longowal-148 106 (Punjab), India
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es