NONLINEAR VARIATIONAL EVOLUTION INEQUALITIES IN HILBERT SPACES

JIN-MUN JEONG, DOO-HOAN JEONG, and JONG-YEOUL PARK

(Received 31 July 1998)

ABSTRACT. The regular problem for solutions of the nonlinear functional differential equations with a nonlinear hemicontinuous and coercive operator \(A \) and a nonlinear term \(f(\cdot,\cdot): x'(t) + Ax(t) + \partial \phi(x(t)) \ni f(t,x(t)) + h(t) \) is studied. The existence, uniqueness, and a variation of solutions of the equation are given.

Keywords and phrases. Nonlinear variational evolution inequality, maximal monotone operator, subdifferential operator, regularity.

2000 Mathematics Subject Classification. Primary 34G20; Secondary 35F25.

1. Introduction. Let \(H \) and \(V \) be two real separable Hilbert spaces such that \(V \) is a dense subspace of \(H \). Let the operator \(A \) be given a single-valued operator, which is hemicontinuous and coercive from \(V \) to \(V^* \). Here \(V^* \) stands for the dual space of \(V \). Let \(\phi: V \to (-\infty, +\infty] \) be a lower semicontinuous, proper convex function. Then the subdifferential operator \(\partial \phi: V \to V^* \) of \(\phi \) is defined by

\[
\partial \phi(x) = \{ x^* \in V^*; \phi(x) \leq \phi(y) + (x^*, x - y), y \in V \},
\]

where \((\cdot, \cdot)\) denotes the duality pairing between \(V^* \) and \(V \). We are interested in the following nonlinear functional differential equation on \(H \):

\[
\frac{dx(t)}{dt} + Ax(t) + \partial \phi(x(t)) \ni f(t,x(t)) + h(t), \quad 0 < t \leq T, \\
x(0) = x_0,
\]

where the nonlinear mapping \(f \) is a Lipschitz continuous from \(\mathbb{R} \times V \) into \(H \). Equation (1.2) is caused by the following nonlinear variational inequality problem:

\[
\left(\frac{dx(t)}{dt} + Ax(t), x(t) - z \right) + \phi(x(t)) - \phi(z) \\
\leq (f(t,x(t)) + h(t), x(t) - z), \quad \text{a.e., } 0 < t \leq T, \quad z \in V,
\]

\[
x(0) = x_0.
\]

If \(A \) is a linear continuous symmetric operator from \(V \) into \(V^* \) and satisfies the coercive condition, then equation (1.2), which is called the linear parabolic variational inequality, is extensively studied in Barbu [5, Sec. 4.3.2] (also see [4, Sec. 4.3.1]). The existence of solutions for the semilinear equation with similar conditions for nonlinear term \(f \) have been dealt with in [1, 2, 6]. Using more general hypotheses for
nonlinear term \(f(\cdot, x) \), we intend to investigate the existence and the norm estimate of a solution of the above nonlinear equation on \(L^2(0, T; V) \cap W^{1,2}(0, T; V^*) \), which is also applicable to optimal control problem. A typical example was given in the last section.

2. Perturbation of subdifferential operator. Let \(H \) and \(V \) be two real Hilbert spaces. Assume that \(V \) is a dense subspace in \(H \) and the injection of \(V \) into \(H \) is continuous. If \(H \) is identified with its dual space we may write \(V \subset H \subset V^* \) densely and the corresponding injections are continuous. The norm on \(V \) (respectively \(H \)) will be denoted by \(\| \cdot \| \) (respectively \(| \cdot | \)). The duality pairing between the element \(v_1 \) of \(V^* \) and the element \(v_2 \) of \(V \) is denoted by \((v_1, v_2) \), which is the ordinary inner product in \(H \) if \(v_1, v_2 \in H \). For the sake of simplicity, we may consider

\[
\| u \| \leq | u | \leq \| u \|_*, \quad u \in V,
\]

where \(\| \cdot \|_* \) is the norm of the element of \(V^* \).

Remark 2.1. If an operator \(A_0 \) is bounded linear from \(V \) to \(V^* \) and generates an analytic semigroup, then it is easily seen that

\[
H = \left\{ x \in V^*: \int_0^T \| A_0 e^{tA_0} x \|_*^2 \, dt < \infty \right\} \quad \text{for the time } T > 0.
\]

Therefore, in terms of the intermediate theory we can see that

\[
(V, V^*)_{1/2,2} = H,
\]

where \((V, V^*)_{1/2,2} \) denotes the real interpolation space between \(V \) and \(V^* \).

We note that nonlinear operator \(A \) is said to be hemicontinuous on \(V \) if

\[
\text{w-lim}_{t \to 0} A(x + ty) = Ax \quad \text{for every } x, y \in V,
\]

where “w-lim” indicates the weak convergence on \(V \). Let \(A: V \to V^* \) be given a single valued and hemicontinuous from \(V \) to \(V^* \) such that

\[
A(0) = 0, \quad (Au - Av, u - v) \geq \omega_1 \| u - v \|^2 - \omega_2 | u - v |^2,
\]

\[
\| Au \|_* \leq \omega_3 (\| u \| + 1)
\]

for every \(u, v \in V \), where \(\omega_2 \in \mathbb{R} \) and \(\omega_1, \omega_3 \) are some positive constants. Here, we note that if \(A(0) \neq 0 \) we need the following assumption:

\[
(Au, u) \geq \omega_1 \| u \|^2 - \omega_2 | u |^2 \quad \text{for every } u \in V.
\]

It is also known that \(A + \omega_2 I \) is maximal monotone and \(R(A + \omega_2 I) = V^* \) where \(R(A + \omega_2 I) \) is the range of \(A + \omega_2 I \) and \(I \) is the identity operator.

First, let us be concerned with the following perturbation of subdifferential operator:

\[
\frac{dx(t)}{dt} + Ax(t) + \partial \phi(x(t)) \ni h(t), \quad 0 < t \leq T, \quad x(0) = x_0.
\]

To prove the regularity for the nonlinear equation \((1.2)\) without the nonlinear term \(f(\cdot, x) \) we apply the method in [5, Sec. 4.3.2].
PROPOSITION 2.1. Let \(h \in L^2(0, T; V^*) \) and \(x_0 \in V \) satisfying that \(\phi(x_0) < \infty \). Then (2.7) has a unique solution
\[
x \in L^2(0, T; V) \cap C([0, T]; H)
\] (2.8)
which satisfies
\[
\|x\|_{L^2 \cap C} \leq C_1 \left(1 + \|x_0\| + \|h\|_{L^2(0, T; V^*)} \right),
\] (2.9)
where \(C_1 \) is a constant and \(L^2 \cap C = L^2(0, T; V) \cap C([0, T]; H) \).

PROOF. Substituting \(v(t) = e^{\omega_2 t} x(t) \) we can rewrite (2.7) as follows:
\[
\frac{d v(t)}{dt} + (A + \omega_2 I) v(t) + e^{-\omega_2 t} \partial \phi(v(t)) \ni e^{-\omega_2 t} h(t), \quad 0 < t \leq T,
\]
\[
v(0) = e^{\omega_2 t} x_0.
\] (2.10)
Then the regular problem for (2.7) is equivalent to that for (2.10). Consider the operator \(L : D(L) \subset H \rightarrow H \)
\[
L v = \{Av + e^{-\omega_2 t} \partial \phi(v) + \omega_2 v \} \cap H \quad \forall v \in D(L),
\]
\[
D(L) = \{v \in V; [Av + e^{-\omega_2 t} \partial \phi(v) + \omega_2 v] \cap H \neq \emptyset \}. \tag{2.11}
\]
Since \(A + \omega_2 I \) is a monotone, biconvex and bounded operator from \(V \) into \(V^* \) and \(e^{-\omega_2 t} \partial \phi \) is maximal monotone, we infer in [4, Cor. 1.1 of Ch. 2] that \(L \) is maximal monotone. Then in [5, Thm. 1.4] (also see [4, Thm. 2.3, Cor. 2.1]), for every \(x_0 \in D(L) \) and \(h \in W^{1,1}([0, T]; H) \), the Cauchy problem (2.10) has a unique solution \(v \in W^{1,\infty}([0, T]; H) \). Let us assume that \(x_0 \in D(L) \) and \(h \in W^{1,2}(0, T; H) \). Multiplying (2.7) by \(x - x_0 \) and using (2.5) and the maximal monotonicity of \(\partial \phi \) it holds
\[
\frac{1}{2} \frac{d}{dt} \|x(t) - x_0\|^2 + \omega_1 \|x(t) - x_0\|^2 \\
\leq \omega_2 \|x(t) - x_0\| + (h(t) - Ax_0 - \partial \phi(x_0), x(t) - x_0).
\] (2.12)
Since
\[
(h(t) - Ax_0 - \partial \phi(x_0), x(t) - x_0) \leq \|h(t) - Ax_0 - \partial \phi(x_0)\|_{e} \|x(t) - x_0\| \\
\leq \frac{1}{2c} \|h(t) - Ax_0 - \partial \phi(x_0)\|^2 + \frac{c}{2} \|x(t) - x_0\|^2
\] (2.13)
for every real number \(c \), so using Gronwall’s inequality, the inequality (2.12) implies that
\[
\|x\|_{L^2(0, T; V) \cap C([0, T]; H)} \leq C_1 \left(1 + \|x_0\| + \|h\|_{L^2(0, T; V^*)} \right).
\] (2.14)
for some positive constant \(C_1 \), that is,
\[
\|x\|_{L^2(0, T; V) \cap C([0, T]; H)} \leq C_1 \left(1 + \|x_0\| + \|h\|_{L^2(0, T; V^*)} \right).
\] (2.15)
Hence we have proved (2.9). Let \(x_0 \in V \) such that \(\partial \phi(x_0) < \infty \) and \(h \in L^2(0, T; V^*) \). Then there exist sequences \(\{x_{0n}\} \subset D(L) \) and \(\{h_n\} \subset W^{1,2}(0, T; H) \) such that \(x_{0n} \rightarrow x_0 \)
in V and $h_n \to h$ in $L^2(0,T;V^*)$ as $n \to \infty$. Let $x_n \in W^{1,\infty}(0,T;H)$ be the solution of (2.7) with initial value x_{0n} and with h_n instead of h. Since $\partial \phi$ is monotone, we have

$$\frac{1}{2} \frac{d}{dt} \left| x_n(t) - x_m(t) \right|^2 + \omega_1 \left| x_n(t) - x_m(t) \right|^2$$

$$< (h_n(t) - h_m(t), x_n(t) - x_m(t)) + \omega_2 \left| x_n(t) - x_m(t) \right|^2$$

$$\leq \frac{1}{2c} \left| h_n(t) - h_m(t) \right|^2 + c \left| x_n(t) - x_m(t) \right|^2$$

$$+ \omega_2 \left| x_n(t) - x_m(t) \right|^2,$$

a.e., $t \in (0,T)$

for every real number c. Therefore, if we choose $\omega_1 - (c/2)$ then by integrating over $[0,T]$ and using Gronwall’s inequality it follows that

$$\left| x_n(t) - x_m(t) \right| + 2 \left(\omega_1 - \frac{c}{2} \right) \left| x_n(t) - x_m(t) \right|_{L^2(0,T;V)}$$

$$\leq e^{2\omega_2 T} \left(|x_{0n} - x_{0m}| + c^{-1} \left| h_n - h_m \right|_{L^2(0,T;V^*)} \right),$$

and hence, we have that $\lim_{n \to \infty} x_n(t) = x(t)$ exists in H. Furthermore, x satisfies (2.7). Indeed, for all $0 \leq s < t \leq T$ and $y \in \partial \phi(x)$, multiplying (2.7) by $x(t) - x$ and integrating over $[s,t]$ we have

$$\frac{1}{2} \left(|x(t) - x|^2 - |x(s) - x|^2 \right) \leq \int_s^t (h(\tau) - Ax - y, x(\tau) - x) d\tau$$

$$+ \omega_2 \int_s^t |x(\tau) - x|^2 d\tau,$$

and, therefore,

$$\frac{1}{t-s} \left(x(t) - x(s), x(s) - x \right) \leq \frac{1}{t-s} \int_s^t (h(\tau) - Ax - y, x(\tau) - x) d\tau$$

$$+ \frac{\omega_2}{t-s} \int_s^t |x(\tau) - x|^2 d\tau.$$

This implies

$$\left(\frac{d}{dt} x(t), x(t) - x \right) \leq (h(t) - Ax - y + \omega_2 (x(t) - x), x(t) - x),$$

a.e., $t \in (0,T)$, that is,

$$\left(\frac{d}{dt} x(t) - h(t) - \omega_2 x(t) + (Ax + y + \omega_2 x), x(t) - x \right) \leq 0.$$
Then equation (2.7) has a unique solution
\[x \in L^2(0, T; V) \cap W^{1,2}(0, T; V^*) \cap C([0, T]; H) \] (2.24)
which satisfies
\[\|x\|_{L^2 \cap W^{1,2} \cap C} \leq C \left(1 + \|x_0\| + \|h\|_{L^2(0, T; V^*)} \right). \] (2.25)

Proof. From (2.7) and (2.23) it follows that
\[\left\| \frac{d}{dt} x(t) \right\|_* + \omega_1 \|x(t)\| \leq \omega_2 \left| x(t) \right| + M \left| x(t) \right| + h(t) \|_{\ast}. \] (2.26)
Hence, by virtue of (2.15) we have that
\[\|x\|_{W^{1,2}(0, T; H)} \leq C_2 \left(1 + \|x_0\| + \|h\|_{L^2(0, T; V^*)} \right). \] (2.27)

Remark 2.2. If \(V \) is compactly imbedded in \(H \), the imbedding \(L^2(0, T; V) \cap W^{1,2}(0, T; V^*) \subset L^2(0, T; H) \) is compact in Aubin [3, Rem. 1, Thm. 2]. Hence, the mapping \(h \to x \) is compact from \(L^2(0, T; H) \) to \(L^2(0, T; H) \).

3. Nonlinear integrodifferential equation.
Let \(f : [0, T] \times V \to H \) be a nonlinear mapping satisfying the following variational evolution inequality:
\[|f(t, x) - f(t, y)| \leq L \|x - y\|, \quad f(t, 0) = 0 \] (3.1)
for a positive constant \(L \).

Theorem 3.1. Let (2.5) and (3.1) be satisfied. Then (1.2) has a unique solution
\[x \in L^2(0, T; V) \cap C([0, T]; H). \] (3.2)
Furthermore, there exists a constant \(C_2 \) such that
\[\|x\|_{L^2 \cap C} \leq C_2 \left(1 + \|x_0\| + \|h\|_{L^2(0, T; V^*)} \right). \] (3.3)
If \((x_0, h) \in V \times L^2(0, T; V^*) \), then \(x \in L^2(0, T; V) \cap C([0, T]; H) \) and the mapping
\[V \times L^2(0, T; V^*) \ni (x_0, h) \mapsto x \in L^2(0, T; V) \cap C([0, T]; H) \] (3.4)
is continuous.

Proof. Let \(y \in L^2(0, T; V) \). Then from (3.1), \(f(\cdot, y(\cdot)) \in L^2(0, T; H) \). Thus, by virtue of Proposition 2.1 we know that the problem
\[\frac{dx(t)}{dt} + Ax(t) + \partial \phi(x(t)) \ni f(t, y(t)) + h(t), \quad 0 < t \leq T, \]
\[x(0) = x_0 \] (3.5)
has a unique solution \(x_y \in L^2(0, T; V) \cap C([0, T]; H) \), where \(x_y \) is the solution of (3.5).
Let us choose a constant \(c > 0 \) such that
\[\omega_1 - \frac{c}{2} > 0, \] (3.6)
and let us fix $T_0 > 0$ so that

$$(2c\omega_1 - c^2)^{-1}e^{2\omega_2 T_0}L < 1.$$ \hspace{1cm} (3.7)

Let $x_i, i = 1, 2,$ be the solution of (3.5) corresponding to $y_i.$ Then, by the monotonicity of $\partial \phi,$ it follows that

$$(\dot{x}_1(t) - \dot{x}_2(t), x_1(t) - x_2(t)) + (Ax_1(t) - Ax_2(t), x_1(t) - x_2(t))$$

$$\leq (f(t, y_1(t)) - f(t, y_2(t)), x_1(t) - x_2(t)), \hspace{1cm} (3.8)$$

and hence, using the assumption (2.5), we have that

$$\frac{1}{2} \frac{d}{dt} |x_1(t) - x_2(t)|^2 + \omega_1 |x_1(t) - x_2(t)|^2$$

$$\leq \omega_2 |x_1(t) - x_2(t)|^2 + \|f(t, y_1(t)) - f(t, y_2(t))\|_s |x_1(t) - x_2(t)|.$$ \hspace{1cm} (3.9)

Since

$$\|f(t, y_1(t)) - f(t, y_2(t))\|_s |x_1(t) - x_2(t)|$$

$$\leq \frac{1}{2c} \|f(t, y_1(t)) - f(t, y_2(t))\|_s^2 + \frac{c}{2} |x_1(t) - x_2(t)|^2$$ \hspace{1cm} (3.10)

for every $c > 0$ and by integrating (3.9) over $(0, T_0)$ we have

$$|x_1(T_0) - x_2(T_0)|^2 + (2\omega_1 - c) \int_0^{T_0} \|x_1(t) - x_2(t)|^2 dt$$

$$\leq \frac{1}{c} \|f(t, y_1(t)) - f(t, y_2(t))\|_{L^2(0, T_0; V^*)}^2 + 2\omega_2 \int_0^{T_0} |x_1(t) - x_2(t)|^2 dt,$$ \hspace{1cm} (3.11)

and by Gronwall’s inequality,

$$\|x_1 - x_2\|_{L^2(0, T_0; V)} \leq (2c\omega_1 - c^2)^{-1}e^{2\omega_2 T_0}\|f(t, y_1) - f(t, y_2)\|_{L^2(0, T_0; V^*)}^2.$$ \hspace{1cm} (3.12)

Thus, from (3.1) it follows that

$$\|x_1 - x_2\|_{L^2} \leq (2c\omega_1 - c^2)^{-1}e^{2\omega_2 T_0}L\|y_1 - y_2\|_{L^2(0, T_0; V)}.$$ \hspace{1cm} (3.13)

Hence we have proved that $y - x$ is a strictly contraction from $L^2(0, T_0; V)$ to itself if condition (3.7) is satisfied. It shows that (1.2) has a unique solution in $[0, T_0].$

Let y be the solution of

$$\frac{dy(t)}{dt} + Ay(t) + \partial \phi(y(t)) \equiv 0, \quad 0 < t \leq T_0, \quad y(0) = x_0.$$ \hspace{1cm} (3.14)

Then, since

$$\frac{d}{dt} (x(t) - y(t)) + (Ax(t) - Ay(t)) + (\partial \phi(x(t)) - \partial \phi(y(t))) \equiv f(t, x(t)) + h(t),$$ \hspace{1cm} (3.15)

multiplying by $x(t) - y(t)$ and using the monotonicity of $\partial \phi,$ we obtain

$$\frac{1}{2} \frac{d}{dt} |x(t) - y(t)|^2 + \omega_1 |x(t) - y(t)|^2$$

$$\leq \omega_2 |x(t) - y(t)|^2 + \|f(t, x(t)) + h(t)\|_s |x(t) - y(t)|.$$ \hspace{1cm} (3.16)
Therefore, putting
\[N = (2c \omega_1 - c^2)^{-1} e^{2\omega_2 T_0}, \] (3.17)
from (3.1), it follows that
\[\| x - y \|_{L^2(0,T_0;V)} \leq N \| f(\cdot,x) + h \|_{L^2(0,T_0;V^*)} \leq NL \| x \|_{L^2(0,T_0;V)} + N \| h \|_{L^2(0,T_0;V^*)}, \] (3.18)
and hence
\[\| x \|_{L^2(0,T_0;V)} \leq \frac{1}{1 - NL} \| y \|_{L^2(0,T_0;V)} + N \| h \|_{L^2(0,T_0;V^*)} \leq C_1 (1 + \| x_0 \| + N \| h \|_{L^2(0,T_0;V^*)}) \] (3.19)
for some positive constant C_2. Since condition (3.7) is independent of the initial values, the solution of (1.2) can be extended to the interval $[0,nT_0]$ for natural number n, i.e., for the initial value $x(nT_0)$ in the interval $[nT_0,(n+1)T_0]$, as analogous estimate (3.19) holds for the solution in $[0,(n+1)T_0]$. Furthermore, similar to (2.12) and (2.15) in Section 2, the estimate (3.3) is easily obtained.

Now we prove the last result. If $(x_0,h) \in V \times L^2(0,T;V^*)$ then x belongs to $L^2(0,T;V)$. Let $(x_0,i,h_i) \in V \times L^2(0,T;V^*)$ and x_1 be the solution of (1.2) with (x_0,i,h_i) in place of (x_0,u) for $i = 1,2$. Multiplying (1.2) by $x_1(t) - x_2(t)$, we have
\[\frac{1}{2} \frac{d}{dt} |x_1(t) - x_2(t)|^2 + \omega_1 \| x_1(t) - x_2(t) \|^2 \leq \omega_2 |x_1(t) - x_2(t)|^2 + \| f(t,x_1(t)) - f(t,x_2(t)) \|_V \| x_1(t) - x_2(t) \| \] (3.20)
\[+ \| h_1(t) - h_2(t) \|_V \| x_1(t) - x_2(t) \|. \]
If $\omega_1 - c/2 > 0$, we can choose a constant $c_1 > 0$ so that
\[\omega_1 - \frac{c}{2} - \frac{c_1}{2} > 0, \] (3.21)
\[\| h_1(t) - h_2(t) \|_V \| x_1(t) - x_2(t) \| \leq \frac{1}{2c_1} \| h_1(t) - h_2(t) \|_V^2 + \frac{c_1}{2} \| x_1(t) - x_2(t) \|^2. \]
Let $T_1 < T$ be such that
\[2\omega_1 - c - c_1 = c^{-1} e^{2\omega_2 T_1} L > 0. \] (3.22)
Integrating (3.20) over $[0,T_1]$, where $T_1 < T$ and as seen in the first part of the proof, it follows that
(2\omega_1 - c - c_1)||x_1 - x_2||^2_{L^2(0, T_0; V)} \\
\leq e^{2\omega_2 T_1} \left\{ ||x_0 - x_0|| + \frac{1}{c} ||f(t, t) - f(t, t)||^2_{L^2(0, T_0; V^*)} + \frac{1}{c_1} ||h_1 - h_2||_{L^2(0, T_0; V^*)} \right\} \\
\leq e^{2\omega_2 T_1} \left\{ ||x_0 - x_0|| + \frac{1}{c} L ||x_1 - x_2||^2_{L^2(0, T_0; V^*)} + \frac{1}{c_1} ||h_1 - h_2||_{L^2(0, T_0; V^*)} \right\}. \\
(3.23)

Putting
N_1 = 2\omega_1 - c - c_1 - c^{-1} e^{2\omega_2 T_1} L, \\
(3.24)

we have
||x_1 - x_2||_{L^2} \leq \frac{e^{2\omega_2 T_1}}{N_1} \left(||x_0 - x_0|| + \frac{1}{c_1} ||h_1 - h_2|| \right). \\
(3.25)

Suppose \((x_{0n}, h_n) \rightarrow (x_0, h)\) in \(V \times L^2(0, T; V^*)\), and let \(x_n\) and \(x\) be the solutions of (1.2) with \((x_{0n}, h_n)\) and \((x_0, h)\), respectively. Then, by virtue of (3.25) and (3.20), we see that \(x_n \rightarrow x\) in \(L^2(0, T_1, V) \cap C([0, T_1]; H)\). This implies that \(x_n(T_1) \rightarrow x(T_1)\) in \(V\). Therefore the same argument shows that \(x_n \rightarrow x\) in

\[L^2(T_1, \min\{2T_1, T\}; V) \cap C([T_1, \min\{2T_1, T\}]; H). \] \\
(3.26)

Repeating this process, we conclude that \(x_n \rightarrow x\) in \(L^2(0, T; V) \cap C([0, T]; H)\).

If \(\partial \phi\) satisfies the growth condition (2.23) as is seen in Corollary 2.1, we can obtain the following result.

Corollary 3.1. Let (2.5), (3.1), and the growth condition (2.23) be satisfied. Then (1.2) has a unique solution

\[x \in L^2(0, T; V) \cap W^{1,2}(0, T; V^*) \subset C([0, T]; H). \] \\
(3.27)

Furthermore, there exists a constant \(C_2\) such that

\[||x||_{L^2(0, T; V) \cap W^{1,2}(0, T; V^*)} \leq C_2 \left(1 + ||x_0|| + ||h||_{L^2(0, T; V^*)} \right). \] \\
(3.28)

If \((x_0, h) \in V \times L^2(0, T; V^*)\), then \(x \in L^2(0, T; V) \cap W^{1,2}(0, T; V^*)\) and the mapping

\[V \times L^2(0, T; V^*) \ni (x_0, h) \mapsto x \in L^2(0, T; V) \cap W^{1,2}(0, T; V^*) \] \\
(3.29)

is continuous.

Example. Let \(\Omega\) be a region in an \(n\)-dimensional Euclidean space \(\mathbb{R}^n\) with boundary \(\partial \Omega\) and closure \(\overline{\Omega}\). For an integer \(m \geq 0\), \(C^m(\Omega)\) is the set of all \(m\)-times continuously differentiable functions in \(\Omega\), and \(C^m_0(\Omega)\) is its subspace consisting of functions with compact supports in \(\Omega\). If \(m \geq 0\) is an integer and \(1 \leq p \leq \infty\), \(W^{m, p}(\Omega)\) is the set of all functions \(f\) whose \(m\)-th derivative \(D^m f\) up to degree \(m\) in the distribution sense belong to \(L^p(\Omega)\). As usual, the norm of \(W^{m, p}(\Omega)\) is given by

\[||f||_{m, p} = \left(\sum_{|\alpha| \leq m} ||D^\alpha f||_p \right)^{1/p} = \left\{ \sum_{|\alpha| \leq m} \int_{\Omega} |D^\alpha f(x)|^p \, dx \right\}^{1/p}, \] \\
(3.30)

where \(1 \leq p < \infty\) and \(D^0 f = f\). In particular, \(W^{0, p}(\Omega) = L^p(\Omega)\) with the norm \(|| \cdot \||_{0, p}^\circ\).
$W_0^{m,p}(\Omega)$ is the closure of $C_0^\infty(\Omega)$ in $W^{m,p}(\Omega)$. For $p^\prime = p/(p-1)$, $1 < p < \infty$, $W^{-m,p}(\Omega)$ stands the dual space $W_0^{m,p}(\Omega)$ of $W_0^{m,p}(\Omega)$ whose norm is denoted by $\| \cdot \|_{-m,p}$.

We take $V = W_0^{m,2}(\Omega)$, $H = L^2(\Omega)$ and $V^* = W^{-m,2}(\Omega)$ and consider a nonlinear differential operator of the form

$$Ax = \sum_{|\alpha| \leq m} (-D)^\alpha A_\alpha(u,x,...,D^m x),$$

(3.31)

where $A_\alpha(u,\xi)$ are real functions defined on $\Omega \times \mathbb{R}^N$ and satisfy the following conditions:

1. A_α are measurable in u and continuous in ξ. There exists $k \in L^2(\Omega)$ and a positive constant C such that

$$A_\alpha(u,0) = 0, \quad |A_\alpha(u,\xi)| \leq C(|\xi| + k(u)), \quad \text{a.e., } u \in \Omega,$$

(3.32)

where $\xi = (\xi_\alpha; |\alpha| \leq m)$.

2. For every $(\xi,\eta) \in \mathbb{R}^N \times \mathbb{R}^N$ and for almost every $u \in \Omega$ the following condition holds:

$$\sum_{|\alpha| \leq m} (A_\alpha(u,\xi) - A_\alpha(u,\eta))(\xi_\alpha - \eta_\alpha) \geq \omega_1 ||\xi - \eta||_{m,2} - \omega_2 ||\xi - \eta||_{0,2},$$

(3.33)

where $\omega_2 \in \mathbb{R}$ and ω_1 is a positive constant.

Let the sesquilinear form $a : V \times V \rightarrow \mathbb{R}$ be defined by

$$a(x,y) = \sum_{|\alpha| \leq m} \int_\Omega A_\alpha(u,x,...,D^m x)D^\alpha y \text{ } du,$$

(3.34)

Then by Lax-Milgram theorem we know that the associated operator $A : V \rightarrow V^*$, defined by

$$(Ax,y) = a(x,y), \quad x,y \in V,$$

(3.35)

is monotone and semicontinuous and satisfies conditions (2.5) in Section 2.

Let $g(t,u,x,p), p \in \mathbb{R}^m$, be assumed that there is a continuous $\rho(t,r) : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^+$ and a real constant $1 \leq \gamma$ such that

$$g(t,u,0,0) = 0,$$

$$|g(t,u,x,p) - g(t,u,x,q)| \leq \rho(t,|x|)(1 + |p|^\gamma - |q|^\gamma)|p - q|,$$

$$|g(t,u,x,p) - g(t,u,y,p)| \leq \rho(t,|x| + |y|)(1 + |p|^\gamma)|x - y|.$$

(3.36)

Let

$$f(t,x)(u) = g(t,u,x,Dx,D^2 x,...,D^m x).$$

(3.37)

Then noting that

$$||f(t,x) - f(t,y)||_{0,2}^2 \leq 2 \int_\Omega |g(t,u,x,p) - g(t,u,x,q)|^2 \text{ } du$$

$$+ 2 \int_\Omega |g(t,u,x,q) - g(t,u,y,q)|^2 \text{ } du,$$

(3.38)
where \(p = (Dx, \ldots, D^m x) \) and \(q = (Dy, \ldots, D^m y) \), it follows from (3.36) that
\[
\left\| f(t, x) - f(t, y) \right\|^2_{0,2,2} \leq L \left(\|x\|_{m,2}, \|y\|_{m,2} \right) \|x - y\|_{m,2},
\]
(3.39)
where \(L(\|x\|_{m,2}, \|y\|_{m,2}) \) is a constant depending on \(\|x\|_{m,2} \) and \(\|y\|_{m,2} \).

Let \(\phi : V \to (-\infty, +\infty] \) be a lower semicontinuous, proper convex function. Then for \(x_0 \in W^m_0(\Omega) \) satisfying that \(\phi(x_0) < \infty \) and \(h \in L^2(0, T; W^{-m,2}(\Omega)) \), (1.2) is caused by the following nonlinear variational inequality problem:

\[
\left(\frac{dx(t)}{dt} + Ax(t), x(t) - z \right) + \phi(x(t)) - \phi(z) \\
\leq (f(t, x(t)) + h(t), x(t) - z), \quad a.e., 0 < t \leq T, \quad z \in W^m_0(\Omega),
\]
(3.40)
has a unique solution
\[
x \in L^2\left(0, T; W^m_0(\Omega) \right) \cap C\left([0, T]; L^2(\Omega) \right).
\]
(3.41)

References

Jeong: Division of Mathematical Sciences, Pukyong National University, Pusan 608-737, Korea
E-mail address: jmjeong@pknu.dolphin.ac.kr

Jeong: Dongeui Technical Junior College, Pusan 614-053, Korea

Park: Department of Mathematics, Pusan National University, Pusan 609-739, Korea
E-mail address: jyepark@hyowon.pusan.ac.kr
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers
The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor
Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation
http://www.hindawi.com