ON MODULES OF CONTINUOUS LINEAR MAPPINGS

DINAMÉRICO P. POMBO JR.
Instituto de Matemática
Universidade Federal Fluminense
Rua São Paulo, s/n
24020-005 Niterói, RJ, BRASIL

(Received April 4, 1996)

ABSTRACT. Modules of continuous linear mappings with values in topological modules of continuous mappings are studied.

KEY WORDS AND PHRASES: Topological modules, continuous linear mappings, continuous mappings.

1991 AMS SUBJECT CLASSIFICATION CODE: 46H25

INTRODUCTION

Grothendieck [1] has proved that, under certain conditions, spaces of continuous linear mappings on locally convex spaces are naturally isomorphic to spaces of continuous mappings on locally compact topological spaces, either as vector spaces or even as locally convex spaces. Non-linear versions of his results have been discussed in [2].

In the present note, we use Grothendieck's argument to show that modules of continuous linear mappings with values in topological modules of continuous mappings may be identified with modules of continuous mappings with values in topological modules of continuous linear forms.

Throughout this note, A denotes a commutative topological ring with an identity element and all A-modules under consideration are unitary. T represents an arbitrary topological space, $C(T; S)$ the A-module of all continuous mappings from T into the topological A-module S and $C(T) := C(T; A)$. Given two topological A-modules R and S, $\mathcal{L}(R; S)$ represents the A-module of all continuous A-linear mappings from R into S and $R' := \mathcal{L}(R; A)$. Moreover, R'_c denotes the A-module R' endowed with the A-module topology τ_s of pointwise convergence.

PROPOSITION 1. Let E, F be topological A-modules and $u \in \mathcal{L}(E; F)$. Then $tu \in \mathcal{L}(E'; F')$ and tu transforms equicontinuous subsets of F' into equicontinuous subsets of E', where tu is the adjoint of u.

PROOF. Straightforward.

Consider $C(T)$ endowed with the topology of compact convergence. By Theorem 15.4 (1) of [5] and Proposition (a) of [3], $C(T)$ is a topological A-module. (The proposition just mentioned will also ensure that other function spaces which will appear in the sequel are topological A-modules.)

For each $t \in T$, let $\delta(t) : C(T) \to A$ be given by $\delta(t)(f) = f(t)$ for $f \in C(T)$. Then $\delta(t) \in (C(T))'$

PROPOSITION 2. The mapping $\delta : t \in T \mapsto \delta(t) \in (C(T))'$ is continuous when $(C(T))'$ is endowed with τ_s, and transforms compact subsets of T into equicontinuous subsets of $(C(T))'$.

PROOF. Let $t_0 \in T$, $f \in C(T)$ and W a neighborhood of zero in A. By the continuity of f at t_0, there exists a neighborhood V of t_0 in T such that $f(t) - f(t_0) \in W$ for all $t \in V$, that is, $(\delta(t) - \delta(t_0))(f) \in W$ for all $t \in V$. This proves the continuity of δ at t_0. Moreover, if K is a compact subset of T, then $\delta(K)(\{f \in C(T); f(K) \subset W\}) \subset W$.

\[\delta(K)(\{f \in C(T); f(K) \subset W\}) \subset W.\]
This shows that $\delta(K)$ is equicontinuous, thereby concluding the proof.

Let E be a topological A-module. For each $u \in \mathcal{L}(E; C(T))$, define $\Psi(u) = u \circ \delta$. By Propositions 1 and 2, $\Psi(u) \in C(T; E')$ and $\Psi(u)$ transforms compact subsets of T into equicontinuous subsets of E'. Let Ψ be the A-linear mapping

$$u \in \mathcal{L}(E; C(T)) \mapsto \Psi(u) \in C(T; E'),$$

and let H be the submodule of $C(T; E')$ formed by the continuous mappings $h : T \rightarrow E'$ such that $h(K)$ is an equicontinuous subset of E' for every compact subset K of T.

THEOREM. Ψ is an A-module isomorphism between $\mathcal{L}(E; C(T))$ and H.

PROOF. We have just observed that $\text{Im}(\Psi) \subset H$.

We claim that Ψ is injective. Indeed, take a $u \in \mathcal{L}(E; C(T))$ such that $\Psi(u) = 0$, and fix an $x \in E$. Then, for all $t \in T$,

$$[(u \circ \delta)(t)](x) = [\delta(t) \circ u](x) = u(x)(t) = 0.$$

Therefore $u(x) = 0$, and so $u = 0$.

Now, let us verify that $H \subset \text{Im}(\Psi)$. Indeed, if $h \in H$, define $u(x)(t) = h(t)(x)$ for $x \in E$, $t \in T$. Then $u(x) \in C(T)$ since $u(x) = \Phi \circ h$, where Φ is the τ_{γ}-continuous A-linear mapping $\varphi \in E' \mapsto \varphi(x) \in A$. Moreover, it is easily seen that u is an A-linear mapping from E into $C(T)$. In order to prove the continuity of u, let K be a compact subset of T and W a neighborhood of zero in A. By the equicontinuity of $h(K)$, there exists a neighborhood U of zero in E such that $h(K)(U) \subset W$. Therefore

$$u(U) \subset \{ f \in C(T); f(K) \subset W \},$$

which proves the continuity of u. Finally, it is clear that $\Psi(u) = h$, which concludes the proof of the theorem.

Let E be a topological A-module. Let \mathcal{M} be a family of bounded subsets of E such that for every $B_1, B_2 \in \mathcal{M}$ there is a $B_3 \in \mathcal{M}$ with $B_1 \cup B_2 \subset B_3$, and let $\tau_{\mathcal{M}}$ be the A-module topology on E' of \mathcal{M}-convergence. By Theorem 15.2 (1), (4) of [5], the set G of all mappings $g : T \rightarrow E'$ such that $g(K)$ is $\tau_{\mathcal{M}}$-bounded in E' for every compact subset K of T is an A-module. By Theorem 25.5 of [5], $H \subset G$, and hence H is a submodule of G. Consider E' endowed with $\tau_{\mathcal{M}}$. Then G, endowed with the topology of compact convergence, is a topological A-module. Consider on H the A-module topology induced by that of G.

COROLLARY 1. Ψ is a topological A-module isomorphism between $\mathcal{L}_{\mathcal{M}}(E; C(T))$ and H, where $\mathcal{L}_{\mathcal{M}}(E; C(T))$ denotes $\mathcal{L}(E; C(T))$ endowed with the A-module topology of \mathcal{M}-convergence.

PROOF. It suffices to observe that, if $B \in \mathcal{M}$, K is a compact subset of T and W is a neighborhood of zero in A, then $u \in \{ v \in \mathcal{L}(E; C(T)); v(B)(K) \subset W \}$ (a basic neighborhood of zero in $\mathcal{L}_{\mathcal{M}}(E; C(T))$) if and only if $\Psi(u) \in \{ h \in H; h(K)(B) \subset W \}$ (a basic neighborhood of zero in H).

If E is a barrelled topological A-module ([4], Definition 2.1), Theorem 15.4 (1) of [5] and Theorem 31 of [4] imply that $H = C(T; E')$. As a consequence, Corollary 1 yields:

COROLLARY 2. If E is a barrelled topological A-module, then $\mathcal{L}_{\mathcal{M}}(E; C(T))$ and $C(T; E')$ are isomorphic as topological A-modules.

REFERENCES

Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be

Hindawi Publishing Corporation
http://www.hindawi.com