We present a backward biorthogonalization technique for giving an orthogonal projection of a biorthogonal expansion onto a smaller subspace, reducing the dimension of the initial space by dropping \(d \) basis functions. We also determine which basis functions should be dropped to minimize the \(L^2 \) distance between a given function and its projection. This generalizes some recent results of Rebollo-Neira.

In [3], Rebollo-Neira gives a backward biorthogonalization technique for projecting a biorthogonal expansion onto a subspace, reducing the dimension \(N \) of the initial space by dropping \(d = 1 \) basis function. In this note, we generalize this method to reduce the space by an arbitrary number \(d \) of basis functions, \(d < N \). Proposition 3.4 in [3] indicates which single basis function is to be removed in order to minimize the \(L^2 \) distance between a function \(f \) and its orthogonal projection into the reduced space. We will also generalize this result in Proposition 7. If more than one basis function is to be dropped, Rebollo-Neira recommends iterating the \(d = 1 \) process. We show via Example 8 that in some circumstances iterating the \(d = 1 \) process \(k \) times leads to results inferior to using Proposition 7 and dropping \(k \) basis functions simultaneously.

We begin with a Hilbert space \(H \) and an \(N \)-dimensional subspace \(V \). Assume biorthogonal bases of \(V \) given by \(\{ x'_i \}_{i=1}^N \) and \(\{ x_i \}_{i=1}^N \) such that \(\langle x'_i, x_j \rangle = \delta_{ij} \). Now drop \(d \) basis elements from each set, without loss of generality the first \(d \) elements for notational purposes, and form the reduced subspaces \(\tilde{V} = \text{span} \{ x_i \}_{i=d+1}^N \) and \(\tilde{V}' = \text{span} \{ x'_i \}_{i=1}^d \). We wish to modify the \(x'_i \) so that the projection from \(V \) to \(\tilde{V} \) is orthogonal. We next recursively construct the sequence \(\{ v'_i \}_{i=1}^d \subset \tilde{V}' \) by

\[
\begin{align*}
v'_1 &= x'_1, \\
v'_i &= x'_i - \sum_{\ell=1}^{i-1} \frac{\langle x'_i, v'_\ell \rangle}{\langle v'_\ell, v'_\ell \rangle} v'_\ell, \quad i \leq d.
\end{align*}
\]
2 A note on comprehensive backward biorthogonalization

We observe that the set \{v_j^i\}_{i=1}^d forms an orthogonal basis of \(\tilde{V}'\) by construction. We then construct the sequence \(\{\tilde{x}_i^i\}_{i=d+1}^N\) by

\[
\tilde{x}_i^i = x_i^i - \sum_{\ell=1}^d \frac{\langle x_i^i, v_j^\ell \rangle}{\langle v_j^\ell, v_j^\ell \rangle} v_j^\ell
\]

and set \(U = \text{span}\{\tilde{x}_i^i\}_{i=d+1}^N\). We will see that this formula generalizes the dual modification of [3, Theorem 3.1] for \(d \geq 1\). Note that each \(\tilde{x}_i^i\) is created to be orthogonal to \(\tilde{V}'\) by subtracting from \(x_i^i\) its projection onto \(\tilde{V}'\).

Proposition 1. The spaces \(U\) and \(\tilde{V}'\) are orthogonal complements in \(V\), \(V = \tilde{V} \oplus \tilde{V}'\).

Proof. Choose \(i, j\) such that \(j \leq d < i\) and use the definition of \(\tilde{x}_i^i\) and the orthogonality of \(\{v_j^i\}\),

\[
\langle \tilde{x}_i^i, v_j^i \rangle = \langle x_i^i, v_j^i \rangle - \sum_{\ell=1}^d \frac{\langle x_i^i, v_j^\ell \rangle}{\langle v_j^\ell, v_j^\ell \rangle} \langle v_j^\ell, v_j^i \rangle = \langle x_i^i, v_j^i \rangle - \langle x_i^i, v_j^i \rangle = 0.
\]

Thus \(U\) and \(\tilde{V}'\) are orthogonal subspaces of \(V\), and their dimensions add to \(N\). \(\square\)

We next verify that \(U\) and \(\tilde{V}\) are actually the same space.

Lemma 2. The spaces \(U\) and \(\tilde{V}\) are orthogonal complements in \(V\), and \(U = \tilde{V}\).

Proof. By (1), we can write \(v_j^i = \sum_{n=1}^{j} a_n x_n^i\) for some constants \(a_n\), so the original biorthogonality condition \(\langle x_i^i, x_j \rangle = \delta_{ij}\) says that, for \(j < i\), \(\langle v_j^i, x_i \rangle = \sum_{n=1}^{j} a_n \langle x_n^i, x_i \rangle = 0\). Thus \(\tilde{V}\) and \(\tilde{V}'\) are orthogonal subspaces of \(V\), and their dimensions add to \(N\). By the previous proposition, \(U = \tilde{V}\). \(\square\)

Next we give the desired biorthogonal bases of the reduced subspace \(\tilde{V}\).

Proposition 3. The reduced spaces \(U\) and \(\tilde{V}\) are identical and have biorthogonal bases \(\{\tilde{x}_i^i\}_{i=d+1}^N\) and \(\{x_j\}_{j=d+1}^N\).

Proof. Using Lemma 2 and (2), we have for \(i, j > d \geq \ell\),

\[
\langle \tilde{x}_i^i, x_j \rangle = \langle x_i^i, x_j \rangle - \sum_{\ell=1}^d \frac{\langle x_i^i, v_j^\ell \rangle}{\langle v_j^\ell, v_j^\ell \rangle} \langle v_j^\ell, x_j \rangle = \delta_{ij} - \sum_{\ell=1}^d \frac{\langle x_i^i, v_j^\ell \rangle}{\langle v_j^\ell, v_j^\ell \rangle} \cdot 0 = \delta_{ij}.
\]

\(\square\)

In order to give an explicit method for determining which basis functions to drop to minimize the residual, we give a formula for the projection operator.

Proposition 4. The orthogonal projection of \(V\) onto \(\tilde{V}\) is \(P(\cdot) = \sum_{i=d+1}^N \tilde{x}_i^i(\cdot)x_i\).

Proof. By Proposition 3, \(P(w) = w\) for all \(w \in \tilde{V}\) and \(\text{Range}(P) = \tilde{V}\). From Propositions 1 and 3, \(\tilde{V}'\) is the null space of \(P\), and \(\text{Range}(P)\) and \(\tilde{V}' = \text{Null}(P)\) are orthogonal, so \(P\) is an orthogonal projection. \(\square\)
The following generalizes [3, Corollary 3.2] to give the coefficients of $P(f)$ for the case $d \geq 1$.

Theorem 5. If $f = \sum_{i=1}^{N} c_i x_i$, where $c_i = \langle x_i', f \rangle$, then

$$P(f) = \sum_{i=d+1}^{N} c'_i x_i,$$

where $c'_i = c_i - \sum_{\ell=1}^{d} \langle x'_i, v'_\ell \rangle \langle v'_\ell, f \rangle.$

Proof. We calculate, using (2),

$$P(f) = \sum_{i=d+1}^{N} \tilde{x}'_i(f)x_i = \sum_{i=d+1}^{N} \left(\langle x'_i, f \rangle - \sum_{\ell=1}^{d} \langle x'_i, v'_\ell \rangle \langle v'_\ell, f \rangle \right)x_i.$$

so $P(f) = \sum_{i=d+1}^{N} c'_i x_i$, where

$$c'_i = c_i - \sum_{\ell=1}^{d} \langle x'_i, v'_\ell \rangle \langle v'_\ell, f \rangle.$$

The following generalizes [3, Corollary 3.3] for the case $d \geq 1$.

Corollary 6. If $f = \sum_{i=1}^{N} c_i x_i$, where $c_i = \langle x'_i, f \rangle$, then

$$\|f\|^2 = \|P(f)\|^2 + \sum_{i=1}^{d} \frac{1}{\|v'_i\|^2} \left| \sum_{k=1}^{i} c_k \langle v'_i, x_k \rangle \right|^2.$$

Proof. Since $V = \tilde{V} \oplus \tilde{V}'$, we can write $f = P(f) \oplus \text{proj}_{\tilde{V}'}(f)$, where $\text{proj}_{\tilde{V}'}(f) = \sum_{i=1}^{d} \langle v'_i/\|v'_i\|, f \rangle \langle v'_i/\|v'_i\| \rangle$ is the projection of f onto \tilde{V}' using the orthogonal basis $\{v'_i\}$. Thus by Parseval and then Lemma 2, we have

$$\|f\|^2 = \|P(f)\|^2 + \sum_{i=1}^{d} \left(\frac{\langle v'_i/\|v'_i\|, f \rangle \langle v'_i/\|v'_i\| \rangle}{\|v'_i\|^2} \right)^2 = \|P(f)\|^2 + \sum_{i=1}^{d} \frac{1}{\|v'_i\|^2} \left| \langle v'_i, f \rangle \right|^2 \quad (9)$$

$$= \|P(f)\|^2 + \sum_{i=1}^{d} \frac{1}{\|v'_i\|^2} \left| \sum_{k=1}^{i} c_k \langle v'_i, x_k \rangle \right|^2.$$

Next we generalize [3, Proposition 3.4] for the case $d \geq 1$.

Proposition 7. By reindexing the original x_i and x'_i to examine all possible $\binom{N}{d}$ combinations of d components dropped from the original basis of V and to minimize the L^2 distance between f and $P(f)$, choose the set of d basis elements x_i that minimizes

$$\sum_{i=1}^{d} \frac{1}{\|v'_i\|^2} \left| \sum_{k=1}^{i} c_k \langle v'_i, x_k \rangle \right|^2 \quad (10)$$

We now give an example demonstrating that iterating the process k times with $d = 1$ may give a projection considerably farther from the original f than reducing by $k = d$ basis functions simultaneously.
Example 8. For simplicity, we consider a function $f(t)$ in the four-dimensional subspace V with basis functions generated from cardinal spline wavelets. Let $B_3(x)$ be the standard quadratic cardinal spline supported on $[-1, 2]$ and let $w(t)$ be the standard associated wavelet for the Riesz basis of $L^2(\mathbb{R})$ generated by $B_3(x)$ as mentioned in [1] or [2]. Let $V = \text{span}\{x_1, x_2, x_3, x_4\}$, where $x_1(t) = B_3(t + 2)/\|B_3\|$, $x_2(t) = B_3(t - 2)/\|B_3\|$, $x_3(t) = (B_3(t - 2) + B_3(t + 2) + 0.2B_3(t))/\|B_3\|$, $x_4 = w(t)$. The function f can be expressed as $f(t) = 0.7x_1(t) + 0.5x_2(t) + 0.4x_3(t) + x_4(t)$. We wish to drop $d = 2$ basis elements and obtain the best two-dimensional approximation to f. If we iteratively drop one basis element at a time using Proposition 7 with $d = 1$, then we remove x_3 and then x_2 leaving projection $P(f) = 0.9x_1 + x_4$ as shown in Figure 1(a) with residual error $\|f - P(f)\|^2 = 0.82$. However, if we simultaneously drop two elements with $d = 2$, then we instead drop x_1 and x_2 leaving projection $P(f) = 1.1x_3 + x_4$ as shown in Figure 1(b) with residual error $\|f - P(f)\|^2 = 0.03$. As can be seen from these errors and the plots in Figure 1, there is a considerable advantage for $t \geq 1.5$ in removing two basis elements together, rather than dropping them iteratively.
When the value of $\binom{N}{d}$ is large, the computational expense of choosing the optimal set of basis elements to be dropped can be quite large. Investigation of this issue merits further study.

References

David K. Ruch: Department of Mathematical and Computer Sciences, Metropolitan State College of Denver, Denver, CO 80217-3362, USA

E-mail address: ruch@mscd.edu
Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>July 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br