ON π-s-IMAGES OF METRIC SPACES

ZHAOWEN LI

Received 6 June 2004 and in revised form 24 November 2004

We establish the characterizations of metric spaces under compact-covering (resp., pseudo-sequence-covering, sequence-covering) π-s-maps by means of cfp-covers (resp., sfp-covers, cs-covers) and σ-strong networks.

1. Introduction and definitions

In 1966, Michael [11] introduced the concept of compact-covering maps. Since many important kinds of maps are compact-covering, such as closed maps on paracompact spaces, much work has been done to seek the characterizations of metric spaces under various compact-covering maps, for example, compact-covering (open) s-maps, pseudo-sequence-covering (quotient) s-maps, sequence-covering (quotient) s-maps, and compact-covering (quotient) s-maps, see [3, 9, 12, 15, 16]. π-map is another important map which was introduced by Ponomarev [13] in 1960 and correspondingly, many spaces, including developable spaces, weak Cauchy spaces, g-developable spaces, and semimetrizable spaces, were characterized as the images of metric spaces under certain quotient π-maps, see [1, 4, 6, 7].

The purpose of this paper is to establish the characterizations of metric spaces under compact-covering (resp., pseudo-sequence-covering, sequence-covering) π-s-maps by means of cfp-covers (resp., sfp-covers, cs-covers) and σ-strong networks.

In this paper, all spaces are Hausdorff, and all maps are continuous and surjective. \mathbb{N} denotes the set of all natural numbers. ω denotes $\mathbb{N} \cup \{0\}$. $\tau(X)$ denotes a topology on X. For a collection \mathcal{P} of subsets of a space X and a map $f : X \rightarrow Y$, denote $\{ f(P) : P \in \mathcal{P} \}$ by $f(\mathcal{P})$. For the usual product space $\prod_{i \in \mathbb{N}} X_i$, π_i denotes the projective $\prod_{i \in \mathbb{N}} X_i$ onto X_i.

For a sequence $\{ x_n \}$ in X, denote $\langle x_n \rangle = \{ x_n : n \in \mathbb{N} \}$.

Definition 1.1. Let $f : X \rightarrow Y$ be a map.

(1) f is called a compact-covering map [11] if each compact subset of Y is the image of some compact subset of X.

(2) f is called a sequence-covering map [14] if whenever $\{ y_n \}$ is a convergent sequence in Y, then there exists a convergent sequence $\{ x_n \}$ in X such that each $x_n \in f^{-1}(y_n)$.
(3) f is called a pseudo-sequence-covering map [3] if each convergent sequence (including its limit point) of Y is the image of some compact subset of X.

(4) f is called an s-map, if $f^{-1}(y)$ is separable in X for any $y \in Y$.

(5) f is called a π-map [13], if (X,d) is a metric space, and for each $y \in Y$ and its open neighborhood V in Y, $d(f^{-1}(y),M \setminus f^{-1}(V)) > 0$.

(6) f is called a π-s-map, if f is both π-map and s-map.

It is easy to check that compact maps on metric spaces are π-s-maps.

Definition 1.2. Let $\{\mathcal{P}_n\}$ be a sequence of covers of a space X such that \mathcal{P}_{n+1} refines \mathcal{P}_n for each $n \in \mathbb{N}$.

(1) $\bigcup\{\mathcal{P}_n : n \in \mathbb{N}\}$ is called a σ-strong network [5] for X if for each $x \in X$, $\langle \text{st}(x, \mathcal{P}_n) \rangle$ is a local network of x in X. If every \mathcal{P}_n satisfies property P, then $\bigcup\{\mathcal{P}_n : n \in \mathbb{N}\}$ is called a σ-strong network consisting of P-covers.

(2) $\{\mathcal{P}_n\}$ is called a weak development for X if for each $x \in X$, $\langle \text{st}(x, \mathcal{P}_n) \rangle$ is a weak neighborhood base of x in X.

Definition 1.3 [2]. Let X be a space.

(1) Let $\{x_n\}$ be a convergent sequence in X, and $P \subset X$. $\{x_n\}$ is eventually in P if whenever $\{x_n\}$ converges to x, then $\{x\} \cup \{x_n : n \geq m\} \subset P$ for some $m \in \mathbb{N}$.

(2) Let $x \in P \subset X$. P is called a sequential neighborhood of x in X if whenever a sequence $\{x_n\}$ in X converges to x, then $\{x_n\}$ is eventually in P.

(3) Let $P \subset X$. P is called a sequentially open subset in X if P is a sequential neighborhood of x in X for any $x \in P$.

(4) X is called a sequential space if each sequentially open subset in X is open.

Definition 1.4 [10]. Let \mathcal{P} be a collection of subsets of a space X.

(1) \mathcal{P} is called a cfp-cover (i.e., compact-finite-partition cover) of compact subset K in X if there are a finite collection $\{K_\alpha : \alpha \in J\}$ of closed subsets of K and $\{P_\alpha : \alpha \in J\} \subset \mathcal{P}$ such that $K = \bigcup\{K_\alpha : \alpha \in J\}$ and each $K_\alpha \subset P_\alpha$.

(2) \mathcal{P} is called a cfp-cover for X if for any compact subset K of X, there exists a finite subcollection $\mathcal{P}^* \subset \mathcal{P}$ such that \mathcal{P}^* is a cfp-cover of K in X.

(3) \mathcal{P} is called an sfp-cover (i.e., sequence-finite-partition cover) for X if for any convergent sequence (including its limit point) K in X, there exists a finite subcollection $\mathcal{P}^* \subset \mathcal{P}$ such that \mathcal{P}^* is a cfp-cover of K in X.

(4) \mathcal{P} is called a cs-cover for X, if every convergent sequence in X is eventually in some element of \mathcal{P}.

2. Results

Theorem 2.1. A space X is the compact-covering π-s-image of a metric spaces if and only if X has a σ-strong network consisting of point-countable cfp-covers.

Proof. To prove the only if part, suppose $f : (M,d) \to X$ is a compact-covering π-s-map, where (M,d) is a metric space. For each $n \in \mathbb{N}$, put $\overline{\mathcal{F}}_n = \{f(B(z,1/n)) : z \in M\}$, where $B(z,1/n) = \{y \in M : d(z,y) < 1/n\}$. Obviously, $\bigcup\{\overline{\mathcal{F}}_n : n \in \mathbb{N}\}$ is a σ-strong network for X. In fact, for each $x \in X$, and its open neighborhood U, since f is a π-map, then there exists $n \in \mathbb{N}$ such that $d(f^{-1}(x),M \setminus f^{-1}(U)) > 1/n$.

We can pick $m \in \mathbb{N}$ such that $m \geq 2n$. If $z \in M$ with $x \in f(B(z,1/m))$, then
\[
 f^{-1}(x) \cap B(z,1/m) \neq \emptyset.
\] (2.1)
If $B(z,1/m) \notin f^{-1}(U)$, then
\[
d(f^{-1}(x), M \setminus f^{-1}(U)) \leq \frac{2}{m} \leq \frac{1}{n},
\] (2.2)
which is a contradiction. Thus $B(z,1/m) \subset f^{-1}(U)$, so $f(B(z,1/m)) \subset U$. Hence $st(x, \mathcal{F}_m) \subset U$. Therefore $\bigcup \{ \mathcal{F}_n : n \in \mathbb{N} \}$ is a σ-strong network for X.

For each $n \in \mathbb{N}$, let \mathcal{B}_n be a locally finite open refinement of $\{B(z,1/n) : z \in M\}$. Since locally finite collections are closed under finite intersections, we can assume that \mathcal{B}_{n+1} refines \mathcal{B}_n for each $n \in \mathbb{N}$. Put $\mathcal{P}_n = f(\mathcal{B}_n)$. Obviously, \mathcal{P}_{n+1} refines \mathcal{P}_n. Since f is an s-map, each \mathcal{P}_n is point-countable in X. Because \mathcal{P}_n refines \mathcal{F}_n for each $n \in \mathbb{N}$, then $\bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \}$ is also a σ-strong network for X.

We now show that each \mathcal{P}_n is a cfp-cover for X. Suppose K is compact in X, since f is compact-covering, then $f(L) = K$ for some compact subset L of M. Since \mathcal{B}_n is an open cover of L in M, \mathcal{B}_n have a finite subcover \mathcal{B}_L. Thus \mathcal{B}_L can be precisely refined by some finite cover of L consisting of closed subsets of L, denoted by $\{L_\alpha : \alpha \in J_n\}$. Put $\mathcal{P}_n^K = f(\mathcal{B}_L)$, since \mathcal{P}_n^K is precisely refined by closed cover $\{f(L_\alpha) : \alpha \in J_n\}$ of K, then \mathcal{P}_n^K is a cfp-cover of K in X. Hence each \mathcal{P}_n is a cfp-cover for X.

To prove the if part, suppose $\bigcup \{ \mathcal{P}_i : i \in \mathbb{N} \}$ is a σ-strong network for X consisting of point-countable cfp-covers. For each $i \in \mathbb{N}$, \mathcal{P}_i is a point-countable cfp-cover for X. Let $\mathcal{P}_i = \{P_\alpha : \alpha \in \Lambda_i\}$, endow Λ_i with the discrete topology, then Λ_i is a metric space. Put
\[
 M = \left\{ \alpha = (\alpha_i) \in \prod_{i \in \mathbb{N}} \Lambda_i : \langle P_\alpha \rangle \text{ forms a local network at some point } x_\alpha \text{ in } X \right\},
\] (2.3)
and endow M with the subspace topology induced from the usual product topology of the collection $\{\Lambda_i : i \in \mathbb{N}\}$ of metric spaces, then M is a metric space. Since X is Hausdorff, x_α is unique in X. For each $\alpha \in M$, we define $f : M \rightarrow X$ by $f(\alpha) = x_\alpha$. For each $x \in X$ and $i \in \mathbb{N}$, there exists $\alpha_i \in \Lambda_i$ such that $x \in P_{\alpha_i}$. Since $\bigcup \{ \mathcal{P}_i : i \in \mathbb{N} \}$ is a σ-strong network for X, then $\{P_{\alpha_i} : i \in \mathbb{N}\}$ is a local network of x in X. Put $\alpha = (\alpha_i)$, then $\alpha \in M$ and $f(\alpha) = x$. Thus f is surjective. Suppose $\alpha = (\alpha_i) \in M$ and $f(\alpha) = x \in U \in \tau(X)$, then there exists $n \in \mathbb{N}$ such that $P_{\alpha_n} \subset U$. Put
\[
 V = \{ \beta \in M : \text{the } n\text{th coordinate of } \beta \text{ is } \alpha_n \},
\] (2.4)
then V is an open neighborhood of α in M, and $f(V) \subset P_{\alpha_n} \subset U$. Hence f is continuous. For each $\alpha, \beta \in M$, we define
\[
d(\alpha, \beta) = \begin{cases} 0, & \alpha = \beta, \\ \max \{1/k : \pi_k(\alpha) \neq \pi_k(\beta)\}, & \alpha \neq \beta, \end{cases}
\] (2.5)
then d is a distance on M. Because the topology of M is the subspace topology induced from the usual product topology of the collection $\{\Lambda_i : i \in \mathbb{N}\}$ of discrete spaces, thus d
is a metric on \(M \). For each \(x \in U \in \tau(X) \), there exists \(n \in \mathbb{N} \) such that \(st(x, \mathcal{P}_n) \subset U \). For \(\alpha \in f^{-1}(x) \), \(\beta \in M \), if \(d(\alpha, \beta) < 1/n \), then \(\pi_i(\alpha) = \pi_i(\beta) \) whenever \(i \leq n \). So \(x \in P_{\pi_n(\alpha)} = P_{\pi_n(\beta)} \). Thus,

\[
f(\beta) \in \bigcap_{i \in \mathbb{N}} P_{\pi_i(\beta)} \subset P_{\pi_n(\beta)} \subset U.
\]

Hence

\[
d(f^{-1}(x), M \setminus f^{-1}(U)) \geq \frac{1}{n}.
\]

Therefore \(f \) is a \(\pi \)-map.

For each \(x \in X \), it follows from the point-countable property of \(\mathcal{P}_i \) that \(\{ \alpha \in \Lambda_i : x \in P_{\alpha} \} \) is countable. Put

\[
L = \left(\bigcap_{i \in \mathbb{N}} \{ \alpha \in \Lambda_i : x \in P_{\alpha} \} \right) \cap M,
\]

then \(L \) is a hereditarily separable subspace of \(M \), and \(f^{-1}(x) \subset L \). Thus \(f^{-1}(x) \) is separable in \(M \), that is, \(f \) is an \(s \)-map.

We will prove that \(f \) is compact-covering. Suppose \(K \) is compact in \(X \). Since each \(\mathcal{P}_n \) is a cfp-cover for \(X \), there exists finite subcollection \(\mathcal{P}^K_n \) such that it is a cfp-cover of \(K \) in \(X \). Thus there are a finite collection \(\{ K_{\alpha} : \alpha \in J_n \} \) of closed subsets of \(K \) and \(\{ P_{\alpha} : \alpha \in J_n \} \subset \mathcal{P}^K_n \) such that \(K = \bigcup \{ K_{\alpha} : \alpha \in J_n \} \) and each \(K_{\alpha} \subset P_{\alpha} \). Obviously, each \(K_{\alpha} \) is compact in \(X \). Put

\[
L = \left\{ (\alpha_i) : \alpha_i \in J_i, \bigcap_{i \in \mathbb{N}} K_{\alpha_i} \neq \emptyset \right\},
\]

then

(i) \(L \) is compact in \(M \).

In fact, for all \((\alpha_i) \notin L \), \(\bigcap_{i \in \mathbb{N}} K_{\alpha_i} = \emptyset \). From \(\bigcap_{i \in \mathbb{N}} K_{\alpha_i} = \emptyset \), there exists \(n_0 \in \mathbb{N} \) such that \(\bigcap_{i=1}^{n_0} K_{\alpha_i} = \emptyset \). Put

\[
W = \left\{ (\beta_i) : \beta_i \in J_i, \beta_i = \alpha_i, 1 \leq i \leq n_0 \right\},
\]

then \(W \) is an open neighborhood of \((\alpha_i) \) in \(\prod_{i \in \mathbb{N}} J_i \), and \(W \cap L = \emptyset \). Thus \(L \) is closed in \(\prod_{i \in \mathbb{N}} J_i \). Since \(\prod_{i \in \mathbb{N}} J_i \) is compact in \(\prod_{i \in \mathbb{N}} \Lambda_i \), \(L \) is compact in \(M \).

(ii) \(L \subset M \), \(f(L) = K \).

In fact, for all \((\alpha_i) \in L \), \(\bigcap_{i \in \mathbb{N}} K_{\alpha_i} \neq \emptyset \). Pick \(x \in \bigcap_{i \in \mathbb{N}} K_{\alpha_i} \), then \((P_{\alpha_i}) \) is a local network of \(x \) in \(X \), so \((\alpha_i) \in M \). This implies \(L \subset M \).

For all \(x \in K \), for each \(i \in \mathbb{N} \), pick \(\alpha_i \in J_i \) such that \(x \in K_{\alpha_i} \). Thus \(f((\alpha_i)) = x \), so \(K \subset f(L) \). Obviously, \(f(L) \subset K \). Hence \(f(L) = K \).

In a word, \(f \) is compact-covering.

Corollary 2.2. A space \(X \) is the compact-covering, quotient, and \(\pi \)-image of a metric space if and only if \(X \) has a weak-development consisting of point-countable cfp-covers.
Thus there exists \(n \) neighborhood base of \(X \) countable cs-covers for each \(x \in X \) and \(H \in \mathcal{P} \). To show that each \(x \in X \), put \(\{ P_n : n \in \mathbb{N} \} \) is a sequential neighborhood base of \(x \) in \(X \). Obviously, \(X \) is a sequential space. Thus \(\text{st}(x, \mathcal{P}_n) \) is a weak neighborhood base of \(x \) in \(X \). Hence \(\{ \mathcal{P}_n \} \) is a weak-development for \(X \).

To prove the if part, suppose \(X \) has a weak development consisting of point-countable cs-covers. From Theorem 2.1, \(X \) is the image of a metric space under a compact-covering \(\pi-s \)-map \(f \). Obviously, \(X \) is sequential. By [8, Proposition 2.1.16], \(f \) is quotient.

Similar to the proofs of Theorem 2.1 and Corollary 2.2, we have the following theorem.

Theorem 2.3. A space \(X \) is the pseudo-sequence-covering \(\pi-s \)-image of a metric space if and only if \(X \) has a \(\sigma \)-strong network consisting of point-countable sfp-covers.

Corollary 2.4. A space \(X \) is the pseudo-sequence-covering, quotient, and \(\pi-s \)-image of a metric space if and only if \(X \) has a weak-development consisting of point-countable sfp-covers.

Theorem 2.5. A space \(X \) is the sequence-covering \(\pi-s \)-image of a metric space if and only if \(X \) has a \(\sigma \)-strong network consisting of point-countable cs-covers.

Proof. To prove the only if part, suppose \(f : (M, d) \to X \) is a sequence-covering \(\pi-s \)-map, where \((M, d) \) is a metric space. Similar to the proof of Theorem 2.1, we can show that \(\bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \} \) is a \(\sigma \)-strong network consisting of point-countable covers. It suffices to show that each \(\mathcal{P}_n \) is a cs-cover for \(X \). Suppose \(\{ x_n \} \) converges to \(x \in X \). Since \(f \) is sequence-covering, then there exists a convergent sequence \(\{ z_i \} \) such that each \(z_i \in f^{-1}(x_i) \). Suppose \(\{ z_i \} \to z \), then \(z \in f^{-1}(x) \) and \(z \in B \) for some \(B \in \mathcal{P}_n \). Thus \(\{ z_i \} \) is eventually in \(B \), so \(\{ x_i \} \) is eventually in \(f(B) \in \mathcal{P}_n \). Hence each \(\mathcal{P}_n \) is a cs-cover for \(X \).

To prove the if part, suppose \(\bigcup \{ \mathcal{P}_i : i \in \mathbb{N} \} \) is a \(\sigma \)-strong network consisting of point-countable cs-covers for \(X \). For each \(i \in \mathbb{N} \), \(\mathcal{P}_i \) is a point-countable cs-cover for \(X \). Let \(\mathcal{P}_i = \{ P_a : \alpha \in \Lambda_i \} \). Similar to the proof of Theorem 2.1, we can show that \(f \) is a \(\pi-s \)-map. It suffices to show that \(f \) is sequence-covering. Suppose \(\{ x_n \} \) converges to \(x \) in \(X \). For each \(i \in \mathbb{N} \), since \(\mathcal{P}_i \) is a cs-cover for \(X \), then there exists \(P_a \in \mathcal{P}_i \) such that \(\{ x_n \} \) is eventually in \(P_a \). For each \(n \in \mathbb{N} \), if \(x_n \in P_a \), let \(\alpha_{in} = \alpha_i \); if \(x_n \notin P_a \), pick \(\alpha_{in} \in \Lambda_i \) such that \(x_n \in P_{\alpha_{in}} \). Thus there exists \(n_i \in \mathbb{N} \) such that \(\alpha_{in} = \alpha_i \) for all \(n > n_i \). So \(\{ \alpha_{in} \} \) converges to \(\alpha_i \). For each \(n \in \mathbb{N} \), put

\[
\beta_n = (\alpha_{in}) \in \prod_{i \in \mathbb{N}} \Lambda_i \tag{2.11}
\]

then \((\beta_n) \in f^{-1}(x_n) \) and \(\{ \beta_n \} \) converges to \(x \). Thus \(f \) is sequence-covering.

Similar to the proof of Corollary 2.2, we have the following corollary.

Corollary 2.6. A space \(X \) is the sequence-covering, quotient, and \(\pi-s \)-image of a metric space if and only if \(X \) has a weak-development consisting of point-countable cs-covers.

We give examples to illustrate the theorems of this paper.
Example 2.7. Let Z be the topological sum of the unit interval $[0,1]$, and the collection
$\{S(x) : x \in [0,1]\}$ of 2^ω convergent sequence $S(x)$. Let X be the space obtained from Z
by identifying the limit point of $S(x)$ with $x \in [0,1]$, for each $x \in [0,1]$. Then, from [8, Example 2.9.27], or see [3, Example 9.8], we have the following facts.

(1) X is the compact-covering, quotient compact image of a locally compact metric
space.

(2) X has no point-countable cs-network.

The above facts together with [9, Theorem 1] yield the following conclusion: compact-
covering (quotient) π-s-images of metric spaces are not sequence-covering (quotient)
π-s-images of metric spaces.

Example 2.8. Let X be a sequential fan S_ω (see [8, Example 1.8.7]), then X is a Fréchet
and \aleph_0-space. So X is the sequence-covering s-image of a metric space. Because X is
not g-first countable, thus X is not the pseudo-sequence-covering π-image of a metric
space. Hence the following holds: sequence-covering (resp., pseudo-sequence-covering)
s-images of metric spaces are not sequence-covering (resp., pseudo-sequence-covering)
π-s-images of metric spaces.

Example 2.9. Let X be a Gillman-Jerison space $\psi(\mathbb{N})$ (see [8, Example 1.8.4]). Since X
is developable, then X is the sequence-covering, quotient π-image of a metric space by [10,
Corollary 3.1.12]. But X has no point-countable cs*-networks. Then, it follows from [8,
Theorem 2.7.5] that X is not the pseudo-sequence-covering s-image of a metric space. Thus,

(1) sequence-covering (quotient) π-images of metric spaces are not sequence-
covering (quotient) π-s-images of metric spaces,

(2) pseudo-sequence-covering (quotient) π-images of metric spaces are not pseudo-
sequence-covering (quotient) π-s-images of metric spaces.

Acknowledgments

The author would like to thank the referee for valuable suggestions. This work is sup-
ported by the NSF of Hunan Province in China (No. 04JJ6028) and the NSF of Education
Department of Hunan Province in China (No. 03A002).

References

164.

Zhaowen Li: Department of Information, Hunan Business College, Changsha, Hunan 410205, China

E-mail address: lizhaowen8846@163.com
Special Issue on
Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br