We consider the second-order nonlinear difference equations of the form $\Delta(r_{n-1}\Delta x_{n-1}) + p_n f(x_{n-k}) = h_n$. We show that there exists a solution (x_n), which possesses the asymptotic behaviour $\|x_n - a \sum_{j=0}^{n-1} (1/r_j) + b\| = o(1)$, $a, b \in \mathbb{R}$. In this paper, we extend the results of Agarwal (1992), Dawidowski et al. (2001), Drozdowicz and Popenda (1987), M. Migda (2001), and M. Migda and J. Migda (1988). We suppose that f has values in Banach space and satisfies some conditions with respect to the measure of noncompactness and measure of weak noncompactness.

1. Introduction

Let \mathbb{C} be the set of complex numbers and let \mathbb{R} be the set of real numbers and $l_1(\mathbb{C})$ the space of complex-valued sequences (c_n) such that

$$\|(c_n)\|_1 := \sum_{i=1}^{\infty} |c_n| < \infty. \quad (1.1)$$

Let $(X, \| \cdot \|)$ be a complex (real) Banach space and $l_\infty(X)$ denote the space of bounded sequences $x = (x_n)$ in X with the norm

$$\|x\|_\infty = \|(x_n)\|_\infty = \sup_n \|x_n\|. \quad (1.2)$$

With this norm $l_\infty(X)$ is a Banach space.

In this paper, we are concerned with the difference equation in Banach space:

$$\Delta(r_{n-1}\Delta x_{n-1}) + p_n f(x_{n-k}) = h_n, \quad n \in \mathbb{N}, \quad (1.3)$$

where Δ is the forward difference operator, that is,

$$\Delta x_n = x_{n+1} - x_n, \quad \Delta^2 x_n = \Delta(\Delta x_n), \quad (1.4)$$

and $f : X \to X$.

Copyright © 2005 Hindawi Publishing Corporation
DOI: 10.1155/IJMMS.2005.2769
By a solution of (1.3) we understand a sequence \(x = (x_n) \) in \(l_\infty(X) \) which satisfies (1.3).

The results obtained here generalize some results of M. Migda and J. Migda [9, 10]. In [10] the second-order difference equation of the form

\[\Delta^2 x_n = a_n \varphi(x_{n+k}), \quad n = 1,2,\ldots, k = 0,1,2,\ldots, \]

(1.5)

was considered. Authors give a condition when this equation has a solution, asymptotically equal to \(c, c \in \mathbb{R} \).

2. Main results

We give necessary and sufficient conditions for the existence of solutions.

Let \(f \) be the function from \(X \) to \(X \), \((p_n), (r_n) \) sequences of real numbers, and \((h_n) \) a sequence in Banach space.

Let \(D \) be a nonempty, closed, convex, and bounded subset of Banach space.

Our result will be proved by the following fixed point theorem.

Theorem 2.1 [5]. Let \(D \) be a nonempty, closed, convex, and bounded subset of Banach space.

Let \(F : D \to D \) be a continuous mapping, which is condensing with respect to the measure of noncompactness \(\alpha \):

\[\alpha(F(V)) \leq L \alpha(V), \quad L < 1. \]

(2.1)

Then \(F \) has fixed point, where \(\alpha \) is the Kuratowski’s measure of noncompactness.

Theorem 2.2. Let \(V \subset \mathcal{C}(N^+, X) \) be a family of functions. Then

\[\alpha(V) = \alpha(V(N^+)) = \sup \{ \alpha(V(i)) : i \in N^+ \}, \]

(2.2)

where \(\alpha(V) \) denotes the measure of noncompactness in \(\mathcal{C}(N^+, X) \).

A theorem similar to Theorem 2.1 was proved by Arino et al. [2], see also [8, 11], when \(f \) is weakly-weakly sequentially continuous, that is, if \(x_n \rightharpoonup x_0 \), then \(f(x_n) \rightharpoonup f(x_0) \) for each sequence \((x_n) \), and instead of \(\alpha \) we used \(\beta \)-weak measure of noncompactness.

Theorem 2.3. Let \(f : X \to X \) be the bounded and continuous function.

Let

\[t = \sum_{n=1}^{\infty} (\sum_{j=0}^{n-1} \frac{1}{r_j}) | p_n | < \infty, \]

\[\sum_{n=1}^{\infty} (\sum_{j=0}^{n-1} \frac{1}{r_j}) \| h_n \| < \infty. \]

(2.3)

Moreover,

\[\alpha(f(V)) \leq k \alpha(V), \]

(2.4)

where \(kt < 1 \).
Then for every \(a, b \in \mathbb{R} \) there exists a solution \((x_n)\) of (1.3) which possesses the asymptotic behaviour

\[
\left\| x_n - a \sum_{j=0}^{n-1} \frac{1}{r_j} + b \right\| = o(1).
\] (2.5)

Proof. Let \(a, b \in X \). There exists a constant \(M > 1 \) such that \(\|f(t)\| < M \) for each \(t \in X \).

Assume that

\[
k_n = |p_n| + \|h_n\| \quad \text{for} \quad n \in N,
\]

\[
l_n = \frac{1}{r_n} \sum_{j=n+1}^{\infty} k_j.
\] (2.6)

From (2.3) we have

\[
\sum_{n=1}^{\infty} \left(\sum_{j=0}^{n-1} \frac{1}{r_j} \right) |p_n| + \sum_{n=1}^{\infty} \left(\sum_{j=0}^{n-1} \frac{1}{r_j} \right) \|h_n\|
\]

\[
= \sum_{n=1}^{\infty} \left(\sum_{j=0}^{n-1} \frac{1}{r_j} \right) (|p_n| + \|h_n\|) = \sum_{n=1}^{\infty} \left(\sum_{j=0}^{n-1} \frac{1}{r_j} \right) k_n
\]

\[
= k_1 \cdot \frac{1}{r_0} + k_2 \cdot \left(\frac{1}{r_0} + \frac{1}{r_1} \right) + k_3 \cdot \left(\frac{1}{r_0} + \frac{1}{r_1} + \frac{1}{r_2} \right) + \cdots
\]

\[
= \frac{1}{r_0} (k_1 + k_2 + k_3 + \cdots) + \frac{1}{r_1} (k_2 + k_3 + \cdots) + \frac{1}{r_2} (k_3 + \cdots)
\] (2.7)

\[
= \sum_{n=1}^{\infty} \frac{1}{r_{n-1}} \sum_{j=n}^{\infty} k_j = \sum_{n=1}^{\infty} l_{n-1}.
\]

So the series \(\sum_{n=1}^{\infty} l_n \) is convergent.

Let \(z_n = \sum_{j=n}^{\infty} l_j \) for \(n \in N \).

Define the operator \(T : D \to K \), where

\[
D = \{ y = (y_1, y_2, y_3, \ldots), \|y_n\| \leq Mz_n \}, \quad n \in N,
\]

\[
K = \left\{ y = (y_1, y_2, y_3, \ldots), \left\| y_n - \left(a \sum_{j=0}^{n-1} \frac{1}{r_j} + b \right) \right\| \leq Mz_n \right\}, \quad n \in N.
\] (2.8)

For \(x \in D \) and \(n \in N \) we have

\[
(Tx)_n = \begin{cases}
 a \sum_{j=0}^{n-1} \frac{1}{r_j} + b, & \text{if} \quad n \leq m, \\
 a \sum_{j=0}^{n-1} \frac{1}{r_j} + b - \sum_{j=n}^{\infty} \frac{1}{r_j} \sum_{i=j+1}^{\infty} (p_i f(x_{i-k}) - h_i), & \text{if} \quad n > m.
\end{cases}
\] (2.9)
For $n > m$ we have
\[
\left\| (Tx)_n - \left(a \sum_{j=0}^{n-1} \frac{1}{r_j} + b \right) \right\|
\]
\[
= \left\| a \sum_{j=0}^{n-1} \frac{1}{r_j} + b - \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} (p_i f(x_{i-k}) - h_i) - a \sum_{j=0}^{n-1} \frac{1}{r_j} - b \right\|
\]
\[
= \left\| \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} (p_i f(x_{i-k}) - h_i) \right\| \tag{2.10}
\]
\[
\leq \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} \| p_i f(x_{i-k}) - h_i \| \leq \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} (\| p_i f(x_{i-k}) \| + \| h_i \|)
\]
\[
\leq \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} (\| h_i \| + M | p_i |) \leq \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} M k_i \leq M \sum_{i=n}^{\infty} l_i = M z_n.
\]

So the operator $T: D \to K$ and the continuity of f, T is continuous.

Now, we will prove that T satisfies condition (2.1) of Theorem 2.1.

Let $V \subset D$, where $V = \{ v: v = (v_1, v_2, \ldots) \}$ and $T(V) = \{ T(v): v \in V \}$. Let $V_k = \{ v_k: v \in V, \ v = (v_1, v_2, \ldots, v_k, \ldots) \}$. For $n \leq m$ we obtain
\[
\alpha(T(V)) = \alpha\left(a \sum_{j=0}^{n-1} \frac{1}{r_j} + b \right) = 0. \tag{2.11}
\]

For $n > m$ we have
\[
\alpha(T(V)) = \sup_{n} \alpha\left(a \sum_{j=0}^{n-1} \frac{1}{r_j} + b - \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} (p_i f(V_n) - h_i) \right)
\]
\[
\leq \sup_{n} \left[\alpha\left(a \sum_{j=0}^{n-1} \frac{1}{r_j} + b \right) + \alpha\left(\sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} (p_i f(V_n) - h_i) \right) \right]
\]
\[
\leq \sup_{n} \left[\left(a \sum_{j=0}^{n-1} \frac{1}{r_j} + b \right) + \sup_{n} \left(\sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} (p_i f(V_n) - h_i) \right) \right]
\]
\[
\leq \sup_{n} \left[\sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} p_i f(V_n) + \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} h_i \right]
\]
\[
\leq \sup_{n} \left[\sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} p_i f(V_n) \right] + \sup_{n} \left[\sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} h_i \right]
\]
\[
\leq \sup_{n} \left(\sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} \alpha(p_i f(V_n)) \right) \leq \sum_{i=n}^{\infty} \frac{1}{r_i} \sum_{i=0}^{\infty} \left| p_i \right| \alpha(f(V)).
\]
Using the inequality

\[\alpha(f(V)) \leq k \alpha(V), \quad (2.13) \]

we obtain that

\[\alpha(T(V)) \leq k \alpha(V) \sum_{j=n}^{\infty} \frac{1}{r_j} \sum_{i=j+1}^{\infty} |p_i| \leq k \alpha(V). \quad (2.14) \]

By Theorem 2.1 \(T \) has a fixed point, and by the definition of \(T \) the solution \(x = (x_n) \) satisfies the condition

\[\left\| x_n - a \sum_{j=0}^{n-1} \frac{1}{r_j} + b \right\| = o(1). \quad (2.15) \]

This completes the proof of the theorem. \(\square \)

Because we can extend Theorem 2.1 as in [2, 8], so similar as Theorem 2.3 we can prove the following theorem.

Theorem 2.4. Let \(f : X \to X \) be the bounded and weakly-weakly continuous function. Let

\[t = \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \frac{1}{r_j} |p_n| < \infty, \]

\[\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \frac{1}{r_j} \|h_n\| < \infty, \]

and \(kt < 1 \).

Moreover

\[\beta(f(V)) \leq k \beta(V). \quad (2.17) \]

Then for every \(a, b \in \mathbb{R} \) there exists a solution \((x_n) \) of (1.3) which possesses the asymptotic behaviour

\[\left\| x_n - a \sum_{j=0}^{n-1} \frac{1}{r_j} + b \right\| = o(1). \quad (2.18) \]

Remark 2.5. Observe that the class of continuous functions is different than the class of weakly-weakly sequentially continuous functions and weakly-weakly continuous functions.

There exist many important examples of mappings which are weakly sequentially continuous but not weakly continuous.

The relationship between strong weak and weak sequential continuity for mappings is studied in [3].
Nonlinear delay difference equations in Banach spaces

References

Anna Kisiolek: Institute of Mathematics, Poznan University of Technology, 5 Maria Sklodowska-Curie Square, 60-965 Poznan, Poland

E-mail address: akisiolek@fabryka.net.pl

Ireneusz Kubiaczyk: Collegium Mathematicum, Adam Mickiewicz University, Umultowska 87, 61-614 Poznan, Poland

E-mail address: kuba@amu.edu.pl
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie