SOME MULTIPLE GAUSSIAN HYPERGEOMETRIC GENERALIZATIONS OF
BUSCHMAN-SRIVASTAVA THEOREM

M. I. QURESHI, M. SADIQ KHAN, AND M. A. PATHAN

Received 29 June 2003

Some generalizations of Bailey’s theorem involving the product of two Kummer functions
\(_1F_1\) are obtained by using Watson’s theorem and Srivastava’s identities. Its special cases
yield various new transformations and reduction formulae involving Pathan’s quadruple
hypergeometric functions \(_F^4\), Srivastava’s triple and quadruple hypergeometric functions
\(_F^3\), \(_F^4\), Lauricella’s quadruple hypergeometric function \(_F^4_A\), Exton’s multiple hypergeometric
functions \(_X^A_{E,G,H}\), \(_K_{10}, K_{13}, X_{8s}, (k)H_2^{(n)}, (k)H_4^{(n)}\), Erdélyi’s multiple hypergeometric
function \(_H_{n,k}\), Khan and Pathan’s triple hypergeometric function \(_H_{P}^{4}\), Kampe de Fériet’s
double hypergeometric function \(_F^{A:B:D}_{E,G,H}\), Appell’s double hypergeometric function
of the second kind \(_F^2\), and the Srivastava-Daoust function \(_F^{A:B(1);B^{(2)},...;B^{(n)}}_{D:E(1);E[2]...,E(n)}\). Some known
results of Buschman, Srivastava, and Bailey are obtained.

1. Introduction

In what follows, for the sake of brevity, \((aA)\) denotes the sequence of \(A\) parameters given
by \(a_1,a_2,a_3,...,a_A\) in the contracted notation. Denominator parameters are neither zero
nor negative integers and the Pochhammer symbol \((a)_n\) is defined by

\[
(a)_n = \frac{\Gamma(a + n)}{\Gamma(a)} = \begin{cases}
1 & \text{if } n = 0, \\
(a(a+1) \cdots (a+n-1) & \text{if } n = 1, 2, 3, ..., \end{cases} \tag{1.1}
\]

where the notation \(\Gamma\) is used for the gamma function.

We will use the following power series form of multiple hypergeometric function
[13, 14]:

\[
\sum_{m_1,...,m_n=0}^\infty \Xi(m_1,...,m_n) \frac{z_1^{m_1}}{(m_1)!} \cdots \frac{z_n^{m_n}}{(m_n)!},
\]

Copyright © 2005 Hindawi Publishing Corporation
DOI: 10.1155/IJMMS.2005.143
where, for convenience,

\[
\Xi(m_1, \ldots, m_n) = \frac{\prod_{j=1}^{A}(a_j)_{m_1\Phi_j}^{(1)} \cdots \prod_{j=1}^{B}(b_j)_{m_2\Phi_j}^{(n)}}{\prod_{j=1}^{D}(d_j)_{m_3\Psi_j}^{(1)} \cdots \prod_{j=1}^{E}(e_j)_{m_4\Psi_j}^{(n)}},
\]

the coefficients \(\theta_j^{(k)}, j = 1, 2, \ldots, A; \Psi_j^{(k)}, j = 1, 2, \ldots, B; \Phi_j^{(k)}, \Psi_j^{(k)}, j = 1, 2, \ldots, D; \delta_j^{(k)}, j = 1, 2, \ldots, E^{(k)}; \) for all \(k \in \{1, 2, \ldots, n\}\), are zero and real constants (positive and negative) [13, equations (5), (6), (7), (8), (9), (19), (20), (21), pages 270–272] and \(\langle b^{(k)}_j \rangle\) abbreviates the array of \(B^{(k)}\) parameters \(b_j^{(k)}, j = 1, 2, \ldots, B^{(k)}\); for all \(k \in \{1, 2, \ldots, n\}\), with similar interpretations for others. Here \(F_2, F_{2:2:3}, X_{2:2:3}, F_A^{(3)}, F_3, F_4, D, K_{10}, K_{23}, H_{14}^{(1)}, H_{12}^{(2)}, X_8, H_{n,k}, H_{14}^{(P)}, F_4, F_4, F_A^{(3)}, F_{2:2:3}^{(4)}, D, E_{2:2:3}, E_{2:2:3}^{(4)}\) are Appell’s double hypergeometric function (see [3, (2), page 73]; see also [9, (139), page 265], [13, (3), page 23]), Kampé de Fériet’s double hypergeometric function (see [15, (26), page 423]; see also [13, (28), page 27]), Exton’s double hypergeometric function [6, (1.2), page 137], Lauricella’s triple hypergeometric function [5, (2.1.1), page 41], Srivastava’s triple hypergeometric function [10, page 428], Lauricella’s quadruple hypergeometric function [13, (1), page 33], Exton’s multiple hypergeometric functions (see [5, (3.3.10), (3.3.13), page 79], [13, (41), page 40], [5, (3.5.3), page 97], [13, (190), page 324]), Erdélyi’s multiple hypergeometric function [13, (19), page 36], triple hypergeometric function of Khan–Pathan [7, (1.1), page 85], Srivastava’s quadruple hypergeometric function [11, (1.2), pages 35–36], Pathan’s quadruple hypergeometric function [8, (1.2), page 172], and Srivastava-Daoust’s multiple hypergeometric function [13, (21), page 37], respectively.

The present note is devoted to the investigation of general multiple series identities which extend and generalize theorems of Buschman, Srivastava, and Bailey. The theorem given in Section 2 will be seen to be extremely useful, in that most properties of hypergeometric series carry over naturally and simply for these identities and provide connections with various classes of well-known hypergeometric functions and even new representations for special cases of these functions. Some applications of this theorem are given in Section 3. Clearly, the same procedure could have been utilized to extend many more results on hypergeometric functions. But, instead, we deduce fifteen special cases in Section 4.

2. General multiple series identities

Motivated by the works of Buschman, Srivastava, and Bailey, we will establish the following theorem for multiple series which is more generalized than multiple Gaussian hypergeometric functions \(F^{(3)}, F^{(4)}, \text{and } F^{(4)}_p\).

Theorem 2.1. Let \(S_r(a_1 + bj + yk + \delta p), r = 1, 2, \ldots, 7; S_r(0) \neq 0, \) be arbitrary complex-valued functions, let independent coefficients \(a, b, c, \beta, \gamma, \delta, \theta, t, x, y, z, x, y, z, \) be complex variables, let \(c, f \) be arbitrary independent complex parameters (where \(2f \neq 0, -1, \pm 2, \pm 3, \pm 4, \ldots \)), and let any values of numerator and denominator parameters and variables \(x, y, z \) leading to the results which do not make sense be tacitly
excluded, then

\[
\sum_{i,j,k,p=0}^{\infty} S_1(\theta_1 i + \theta_2 j + \theta_1 k + \theta_3 p) S_2(\theta_4 i + \theta_5 j) S_3(\theta_6 i + \theta_6 k + \theta_7 p) \times S_4(\theta_8 j + \theta_9 p) S_5(\theta_{10} i + \theta_{10} k) S_6(\theta_{11} j) S_7(\theta_{12} p) \frac{(-1)^k(c)_i (f)_k x^i y^i z^p}{(2c)_i (2f)_i i! j! k! p!}
\]

\[= \sum_{i,j,p=0}^{\infty} S_1(2\theta_1 i + \theta_2 j + \theta_3 p) S_2(2\theta_4 i + \theta_5 j + \theta_7 p) S_3(\theta_6 i + \theta_9 p) S_4(\theta_8 j + \theta_9 p) \times S_5(2\theta_{10} i) S_6(\theta_{11} j) S_7(\theta_{12} p) \frac{((c+f)/2)_i((1+c+f)/2)_i x^i (y^2/4)^i z^p}{(c+f)_i (c+1/2)_i (f+1/2)_i i! j! k! p!}\]

\[= \sum_{i,j,p=0}^{\infty} \sum_{u,v=0}^{1} S_1(2\theta_1 i + \theta_2 j + \theta_2 u + \theta_3 p) S_2(2\theta_4 i + \theta_5 j + \theta_5 u) S_3(2\theta_6 i + \theta_7 u) \times S_4(2\theta_8 j + \theta_9 p) S_5(2\theta_{10} i) S_6(\theta_{11} j + \theta_{11} u) S_7(\theta_{12} p) \frac{x^u ((c+f)/2)_i((1+c+f)/2)_i (x^2/4)^j (y^2/4)^i z^p}{u! (c+f)_i (c+1/2)_i (f+1/2)_i i! (1+u)_i (2+u)_i j! (2+u)_i k! (2+w)_i p!}\]

\[= \sum_{i,j,p=0}^{\infty} \sum_{u,v=0}^{1} \sum_{w=0}^{u} S_1(2\theta_1 i + \theta_2 j + \theta_2 u + 2\theta_3 p + \theta_3 w) S_2(2\theta_4 i + 2\theta_5 j + \theta_3 u) \times S_3(2\theta_6 i + 2\theta_7 p + \theta_7 w) S_4(2\theta_8 j + \theta_9 p + \theta_3 w) S_5(2\theta_{10} i) S_6(2\theta_{11} j + \theta_{11} u) S_7(2\theta_{12} p + \theta_3 w) \frac{x^u z^v ((c+f)/2)_i((1+c+f)/2)_i (x^2/4)^j (y^2/4)^i (z^2/4)^p}{u! v! w! (c+f)_i (c+1/2)_i (f+1/2)_i i! (1+u)_i (2+u)_i j! (1+w)_i k! (2+w)_i p! (2+w)_i p!}\]

provided that each multiple series involved converges absolutely.

Proof of Theorem 2.1. Let \(L \) denote the left-hand side of (2.1). Then using the series identities [8, Lemma 10(1), page 56] (i.e., replacing \(i \) by \(i-k \))

\[
\sum_{i,j,k,p=0}^{\infty} A(i, j, k, p) = \sum_{i,j,p=0}^{\infty} \sum_{k=0}^{i} A(i-k, j, k, p),
\]

we may write

\[
L = \sum_{i,j,p=0}^{\infty} S_1(\theta_1 i + \theta_2 j + \theta_3 p) S_2(\theta_4 i + \theta_5 j) S_3(\theta_6 i + \theta_7 p) S_4(\theta_8 j + \theta_9 p) S_5(\theta_{10} i) \times S_6(\theta_{11} j) S_7(\theta_{12} p) c f \frac{\theta^c y^f z^p}{(2c)_i (2f)_i i! j! k! p!} F_2 \left[\begin{array}{ccc} -i, f, 1-2c-i; & 1-c-i, 2f; & 1 \end{array} \right].
\]
Using Watson’s summation theorem [12, (26), page 95]

\[
\begin{align*}
\binom{A, B, C;}{A + B + 1, 2C; 1} \\
\frac{\Gamma(1/2) \Gamma(1/2 + C) \Gamma((1 + A + B)/2) \Gamma((1 - A - B)/2 + C)}{\Gamma((1 + A)/2) \Gamma((1 + B)/2) \Gamma((1 - A)/2 + C) \Gamma((1 - B)/2 + C)}
\end{align*}
\]

(2.6)

in (2.5), we get

\[
L = \sum_{i, j, p=0}^{\infty} S_1(\theta_1 i + \theta_2 j + \theta_3 p) S_2(\theta_4 i + \theta_5 j) S_3(\theta_6 i + \theta_7 p) S_4(\theta_8 j + \theta_9 p) S_5(\theta_{10} i) S_6(\theta_{11} j)
\]

\[
\times S_7(\theta_{12} p) \binom{(c); x^i y^j z^p}{(2c); i! j! p!} \frac{\Gamma(1/2) \Gamma(1/2 + f) \Gamma(1 - i - c) \Gamma(i + c + f)}{\Gamma(1/i - 2) \Gamma(1 - i/2 - c) \Gamma(1/2 + f + i/2) \Gamma(i/2 + c + f)}.
\]

(2.7)

Now applying the well-known series identity

\[
\sum_{i=0}^{\infty} A(i) = \sum_{i=0}^{\infty} A(2i) + \sum_{i=0}^{\infty} A(2i + 1)
\]

(2.8)

in (2.7), we have

\[
L = \sum_{i, j, p=0}^{\infty} S_1(2\theta_1 i + \theta_2 j + \theta_3 p) S_2(2\theta_4 i + \theta_5 j) S_3(2\theta_6 i + \theta_7 p) S_4(\theta_8 j + \theta_9 p) S_5(2\theta_{10} i)
\]

\[
\times S_6(\theta_{11} j) S_7(\theta_{12} p) \binom{(c); x^i y^j z^p}{(2c); i! j! p!} \frac{\Gamma(1/2) \Gamma(1/2 + f) \Gamma(1 - 2i - c) \Gamma(2i + c + f)}{\Gamma(1 - i/2 - c) \Gamma(1/2 + f + i)} \Gamma(i + c + f)
\]

\[
+ \sum_{i, j, p=0}^{\infty} S_1(\theta_1 i + \theta_1 + \theta_2 j + \theta_3 p) S_2(\theta_4 i + \theta_4 + \theta_5 j) S_3(2\theta_6 i + \theta_6 + \theta_7 p)
\]

\[
\times S_4(\theta_8 j + \theta_9 p) S_5(2\theta_{10} i + \theta_{10}) S_6(\theta_{11} j) S_7(\theta_{12} p)
\]

\[
\times \binom{(c); x^i y^j z^p}{(2c); i! j! p!} \frac{\Gamma(1/2) \Gamma(1/2 + f) \Gamma(-2i - c) \Gamma(2i + c + f + 1)}{\Gamma(1/2 - c - i) \Gamma(1 + f + i) \Gamma(1/2 + c + f + i)}.
\]

(2.9)

Second-power series on the right-hand side of (2.9) vanishes due to the presence of \(1/\Gamma(-i) = 0\), if \(i = 0, 1, 2, \ldots\), we may then write

\[
L = \sum_{i, j, p=0}^{\infty} S_1(2\theta_1 i + \theta_2 j + \theta_3 p) S_2(2\theta_4 i + \theta_5 j) S_3(2\theta_6 i + \theta_7 p) S_4(\theta_8 j + \theta_9 p) S_5(2\theta_{10} i)
\]

\[
\times S_6(\theta_{11} j) S_7(\theta_{12} p) \binom{(c); x^i y^j z^p}{(2c); i! j! p!} \frac{\Gamma(1/2) \Gamma(1/2 + f) \Gamma(1 - 2i - c) \Gamma(2i + c + f)}{\Gamma(1 - i - c) \Gamma(1/2 + f + i) \Gamma(i + c + f)}.
\]

(2.10)
and after replacing the gamma functions by Pochhammer symbols, we get the right-hand side of (2.1).

Again, now applying Srivastava’s identities (see [12, pages 194–197]; see also [14, (8), page 214, (12), page 217])

\[
\sum_{j=0}^{\infty} A(j) = \sum_{u=0}^{\infty} \sum_{j=0}^{\infty} A(2j + u),
\]

\[
\sum_{j,p=0}^{\infty} B(j, p) = \sum_{u=0}^{1} \sum_{w=0}^{\infty} \sum_{j,p=0}^{\infty} B(2j + u, 2p + w)
\]

in (2.1), and then replacing the gamma functions by Pochhammer symbols, we get the right-hand sides of (2.2) and (2.3), respectively.

\(\square\)

3. Applications of formulas (2.1), (2.2), and (2.3)

3.1. Buschman-Srivastava theorem associated with Srivastava’s function \(F^{(3)}\). In formulas (2.1) and (2.2), setting \(\theta_1 = \theta_2 = \theta_3 = \cdots = \theta_{12} = 1\), \(S_1(i + j + k + p) = S_3(i + k + p) = S_4(j + p) = S_7(p) = 1\), \(S_2(j + i + k) = [(a_A)]_{j+i+k}/[(b_B)]_{j+i+k}\), \(S_5(i + k) = [(d_D)]_{i+k}/[(e_E)]_{i+k}\), \(S_6(j) = [(g_G)]/[(h_H)]_j\), and \(z = 0\), we get

\[
F^{(3)}\left((a_A)\cdots ; (d_D); \cdots ; (g_G); c; f; \cdots ; (h_H); 2c; 2f; x, y, -y\right)
\]

\[
= X^{2; G; 2D+2}_{A; B; H; 2E+3} \left(\frac{(a_A) : (g_G)}{(b_B) : (h_H); c + f, c + \frac{1}{2}}; \frac{\Delta(2; c + f), \Delta[2; (d_D)]}{4(1 + B + E)}; x, y^2\right)
\]

\[
= \sum_{u=0}^{1} \left(\frac{[(a_A)]_u [(g_G)]_u x^u}{[(b_B)]_u [(h_H)]_u} \frac{F^{A; G; 2D+2}_{2A; 2B; 2H+1; 2E+3;}}{F^{2A; 2B; 2H+1; 2E+3;}} \right)
\]

\[
\times \left[\Delta[2; (a_A) + u]; \Delta[2; (g_G) + u]; \Delta[2; (b_B) + u]; \Delta[2; (h_H) + u]; \Delta(2; c + f), \Delta[2; (d_D)]; \Delta[2; (e_E)]; \frac{4^{A+G} x^2}{4(1 + B + H)^2} \right]
\]

\[
= \sum_{u=0}^{1} \left(\frac{[(a_A)]_u [(g_G)]_u x^u}{[(b_B)]_u [(h_H)]_u} \frac{F^{A; G; 2D+2}_{2A; 2B; 2H+1; 2E+3;}}{F^{2A; 2B; 2H+1; 2E+3;}} \right)
\]

\[
\times \left[\Delta[2; (a_A) + u]; \Delta[2; (g_G) + u]; \Delta[2; (b_B) + u]; \Delta[2; (h_H) + u]; \Delta(2; c + f), \Delta[2; (d_D)]; \Delta[2; (e_E)]; \frac{4^{A+G} x^2}{4(1 + B + H)^2} \right]
\]

provided that denominator parameters are neither zero nor negative integers, for convenience, the symbol \(\Delta(m; b)\) abbreviates the array of \(m\) parameters given by \(b/m, (b + 1)/m, (b + 2)/m, \ldots, (b + m - 1)/m\), where \(m = 1, 2, 3, \ldots \) and \([a_A]/n\) denotes the product of a Pochhammer symbol given by \([a_A]/n = (a_1)_n (a_2)_n \cdots (a_A)_n\).

The asterisk in \(\Delta^*(N; j + 1)\) represents the fact that the (denominator) parameter \(N/N\) is always omitted, \(0 \leq j \leq (N - 1)\), so that the set \(\Delta^*(N; j + 1)\) obviously contains only \((N - 1)\) parameters [14, page 214].

The notation \(\Delta[N; (b_B)]\) denotes the array of BN parameters [14, (8), page 47 and pages 193–194] given by \(\Delta(N; b_1), \Delta(N; b_2), \ldots, \Delta(N; b_B)\); similar interpretations for others.
3.2. Buschman-Srivastava theorem associated with Srivastava's function $F^{(4)}$. In formula (2.3), setting $\theta_1 = \theta_2 = \theta_3 = \cdots = \theta_{12} = 1$, $S_4(j + p) = S_S(i + k + p) = 1$, $S_1(i + j + k + p) = [(a_A)]_{i+j+k+p}/[(b_B)]_{i+j+k+p}$, $S_4(j + p) = [(m_M)]_{j+p}/[(n_N)]_{j+p}$, $S_5(i + k) = [(d_D)]_{i+k}/[(e_E)]_{i+k}$, $S_6(j) = [(g_G)]_{j}/[(h_H)]_{j}$, and $S_7(p) = [(q_Q)]_{p}/[(r_R)]_{p}$, we have

$$\begin{align*}
F^{(4)} & \left[(a_A) :: c; (d_D); (g_G); (m_M) : f; (d_D); (q_Q); (m_M); (b_B) :: 2c; (e_E); (h_H); (n_N) : 2f; (e_E); (r_R); (n_N) ; \right. \\
& \left. \sum_{u=0}^{1} \frac{[(a_A)]_{u+w}[(m_M)]_{u+w}[(g_G)]_{u}[(q_Q)]_{u}x^uw^w}{[(b_B)]_{u+w}[(n_N)]_{u+w}[(e_E)]_{u}[(r_R)]_{u}u!w!} \right] \\
& \times F^{(3)} \left[\Delta[2; (a_A) + u + w] :: \Delta[2; (m_M) + u + w]; \right. \\
& \left. \Delta[2; (b_B) + u + w]; \Delta[2; (n_N) + u + w]; \Delta[2; (g_G) + u]; \Delta[2; (d_D)]; \Delta[2; (q_Q) + w]; \right. \\
& \left. \Delta[2; (h_H) + u]; \Delta[2; (e_E)]; \Delta[2; (r_R) + w]; \Delta[2; (m_M)]; \Delta[2; (d_D) + w]; \right. \\
& \left. \Delta[2; (q_Q) + w]; \frac{4^{(A+D)}y^2}{4^{(1+B+E)}}; \frac{4^{(A+M+G)}x^2}{4^{(1+B+N+H)}}; \frac{4^{(A+M+Q)}z^2}{4^{(1+B+N+R)}} \right],
\end{align*}$$

(3.3)

provided that denominator parameters are neither zero nor negative integers.

3.3. Buschman-Srivastava theorem associated with Pathan's function $F^{(4)}_p$. In formula (2.3), putting $\theta_1 = \theta_2 = \theta_3 = \cdots = \theta_{12} = 1$, $S_4(j + p) = S_S(i + k) = 1$, $S_1(i + p + i + k) = [(a_A)]_{j+p+i+k}/[(b_B)]_{j+p+i+k}$, $S_2(i + k + j) = [(g_G)]_{i+k+j}/[(h_H)]_{i+k+j}$, $S_3(p + i + k) = [(d_D)]_{p+i+k}/[(e_E)]_{p+i+k}$, $S_6(j) = [(m_M)]_{j}/[(n_N)]_{j}$, and $S_7(p) = [(q_Q)]_{p}/[(r_R)]_{p}$, we have

$$\begin{align*}
F^{(4)}_p & \left[(a_A) :: c; (d_D); (g_G); (m_M) : f; (d_D); (q_Q); (m_M); (b_B) :: 2c; (e_E); (h_H); (n_N) : 2f; (e_E); (r_R); (n_N) ; \right. \\
& \left. \sum_{u=0}^{1} \frac{[(a_A)]_{u+w}[(m_M)]_{u+w}[(g_G)]_{u}[(q_Q)]_{u}x^uw^w}{[(b_B)]_{u+w}[(n_N)]_{u+w}[(e_E)]_{u}[(r_R)]_{u}u!w!} \right] \\
& \times F^{(3)} \left[\Delta[2; (a_A) + u + w] :: \Delta[2; (d_D) + w]; \Delta[2; (g_G) + u]; \right. \\
& \left. \Delta[2; (b_B) + u + w]; \Delta[2; (e_E)]; \Delta[2; (h_H) + u]; \Delta[2; (r_R) + w]; \Delta[2; (m_M)]; \Delta[2; (d_D) + w]; \right. \\
& \left. \Delta[2; (q_Q) + w]; \frac{4^{(A+G+M)}x^2}{4^{(1+B+N+H)}}; \frac{4^{(A+D+G)}y^2}{4^{(1+B+E+H)}}; \frac{4^{(A+D+Q)}z^2}{4^{(1+B+E+R)}} \right],
\end{align*}$$

(3.4)

provided that denominator parameters are neither zero nor negative integers.
4. Special cases

(i) Setting \(x = E = D = G = H = 0 \) in (3.1) or (3.2), we get

\[
F_{A;B;C;D}^{(1;1;1;1)} \left[\begin{array}{c}
(a_{A}) : c; f; \\
(b_{B}) : 2c; 2f;
\end{array} \right] \\
= 2A+2F_{2B+3} \left[\begin{array}{c}
\Delta(2;c+f), \Delta[2;(a_{A})]; \\
c + f, c + \frac{1}{2}, f + \frac{1}{2}, \Delta[2;(b_{B})]; \\
4^{A-B-1} y^{2}
\end{array} \right], \tag{4.1}
\]

which is known as Buschman-Srivastava theorem (see [4, page 438]; see also [11, (47), page 31]).

(ii) Setting \(A = B = 0 \) in (4.1), we get

\[
1F_{1} \left[\begin{array}{c}
c; \\
2c;
\end{array} \right] 1F_{1} \left[\begin{array}{c}
f; \\
2f;
\end{array} \right] = 2F_{3} \left[\begin{array}{c}
\frac{1}{2}(c + f), \frac{1}{2}(c + f + 1); \\
c + f, c + \frac{1}{2}, f + \frac{1}{2}; \\
y^{2} \frac{4}{y^{2}}
\end{array} \right], \tag{4.2}
\]

which is a known result of Bailey (see [1, (2.11), page 246]; see also [11, (186), page 322]).

(iii) Setting \(B = 0, A = 1, a_{1} = a \) in (4.1), we get

\[
F_{2}(a;c,f;2c,2f;y,-y) = 4F_{3} \left[\begin{array}{c}
\Delta(2;a), \Delta(2;f + c); \\
c + f, c + \frac{1}{2}, f + \frac{1}{2}; \\
y^{2}
\end{array} \right], \tag{4.3}
\]

which is another result of Bailey (see [2, (4.4), page 239]; see also [11, (191), page 323]).

(iv) Setting \(A = G = H = 1, a_{1} = a, g_{1} = g, h_{1} = h, B = D = E = 0 \) in (3.1), we get

\[
F_{A}^{(3)} [a,g,c,f;h,c,f;y,x,-y] = X_{0,3;1}^{1,2;1} \left[\begin{array}{c}
a: \\
\Delta(2;c+f); g: \\
c + f, c + \frac{1}{2}, f + \frac{1}{2}; h; \\
y^{2} x^{2}
\end{array} \right]. \tag{4.4}
\]

(v) Setting \(B = D = E = G = N = Q = 0, A = M = H = R = 1, a_{1} = a, m_{1} = m, h_{1} = h, r_{1} = r \) in (3.3), we get

\[
K_{10}[a,a,a,a;m,m,c,f;h,r,2c,2f;x,z,y,-y] = \sum_{u=0}^{1} \sum_{w=0}^{1} \frac{(a)_{u+w}(m)_{u+w}x^{u}y^{w}}{(h)_{u}(r)_{u}u!w!} \\
\times F_{3}^{(3)} \left[\begin{array}{c}
\Delta(2;a + u + w); -; \Delta(2;m + u + w); -; \Delta(2;c + f); -; \\
\Delta(2;h + u), \Delta^{*}(2;1 + u); \Delta(2;h + u), \Delta^{*}(2;1 + w); \\
\Delta(2;h + u), \Delta^{*}(2;1 + u); \Delta(2;h + u), \Delta^{*}(2;1 + w); \\
\Delta(2;h + u), \Delta^{*}(2;1 + u); \Delta(2;h + u), \Delta^{*}(2;1 + w)
\end{array} \right]. \tag{4.5}
\]
some multiple Gaussian hypergeometric generalizations

(vi) Setting $B = D = E = M = H = R = 0$, $A = N = G = Q = 1$, $a_1 = a$, $n_1 = n$, $g_1 = g$, $q_1 = q$ in (3.3), we get

$$K_{13}[a, a, a; g, q, c, f; n, n, 2c, 2f; x, z, y, -y] = \sum_{u, w=0}^{1} \frac{(a)_{u+w}(g)_u(q)_w x^u y^w}{(n)_{u+w} u! w!} \times F^{(3)} \left[\Delta(2; a + u + w); \frac{1}{2}, \frac{1}{2}; -; \frac{1}{2} \right] (4.6)

\times F^{(3)} \left[\begin{array}{c}
\Delta(2; c + f); \Delta(2; g + u); \Delta(2; q + u);
\Delta(2; 2; 1 + u); \Delta^*(2; 2; 1 + w); \Delta^*(2; 1 + u); \Delta^*(2; 1 + w); \Delta^*(2; 1 + u);
\end{array} \right].

(vii) Setting $A = M = N = Q = R = 1$, $a_1 = a$, $m_1 = m$, $n_1 = n$, $q_1 = q$, $r_1 = r$, and $B = D = E = G = H = 0$ in (3.4), we get

$$F^{(4)}_A[a; f, q, m, c; 2f, r, n, 2c; -y, z, x, y] = \sum_{u=0}^{1} \sum_{w=0}^{1} \frac{(a)_{u+w}(m)_u(q)_w x^u y^w}{(n)_{u+w} u! w!} \times F^{(3)} \left[\Delta(2; a + u + w); \frac{1}{2}, \frac{1}{2}; -; \frac{1}{2} \right] (4.7)

\times F^{(3)} \left[\begin{array}{c}
\Delta(2; 1 + m + u); \Delta(2; 2; 1 + u); \Delta(2; 2; 1 + w); \Delta^*(2; 1 + u); \Delta^*(2; 1 + w); \Delta^*(2; 1 + u); \Delta^*(2; 1 + w); \Delta^*(2; 1 + u); \Delta^*(2; 1 + u);
\end{array} \right].

(viii) In (2.1), setting $S_1(\theta_1 i + \theta_2 j + \theta_3 k + \theta_4 p) = S_3(\theta_5 i + \theta_6 k + \theta_7 p) = S_4(\theta_8 j + \theta_9 p) = S_5(\theta_{10} i + \theta_{11} k) = S_7(\theta_{12} p) = 1$ and $z = 0$, we get

$$\sum_{i, j, k=0}^{\infty} S_2(\theta_4 i + \theta_5 j + \theta_4 k) S_6(\theta_{11} j) \frac{(c)_i (f)_j x^i y^j (-y)^k}{(2c)_i (2f)_j i! j! k!} (4.8)

= \sum_{i, j=0}^{\infty} S_2(2\theta_4 i + \theta_5 j) S_6(\theta_{11} j) \frac{(c+f)/2, ((1+c+f)/2) x^i (y^2/4)^j}{(c+f)(c+1/2)(f+1/2) i! j!}.

(ix) In (4.8), setting $\theta_4 = \theta_1 = 1$, $\theta_5 = 2$, $S_2(2j + i + k) = (a)_{2j+i+k}$, $S_6(j) = 1/(b)_j$, we get

$$X_8[a, c, f; b, 2c, 2f; x, y, -y] = F^{(2; 2; 0)}_{0; 3; 1} \left[\begin{array}{c}
\Delta(2; a); \frac{c+f}{2}, \frac{c+f+1}{2}; \frac{1}{2}, \frac{1}{2}; \frac{1}{2} \right] (4.9)

\times F^{(3)} \left[\begin{array}{c}
\Delta(2; b); \frac{c+f}{2}, \frac{c+f+1}{2}; \frac{1}{2}, \frac{1}{2}; \frac{1}{2} \right].
$$
(x) In (4.8), setting \(\theta_4 = \theta_{11} = 1, \theta_5 = -1, S_2(i + k - j) = (a)_{i+k-j}, S_6(j) = (b)_j(g)_j, \) we get

\[
H_{3,2}[a, c, f, b, g; 2c, 2f; y, -y, x]
= F_{0;3;11}^{1;2;2}(a : 2, -1) : \left[\frac{c + f}{2} : 1 \right], \left[\frac{c + f + 1}{2} : 1 \right]; [b : 1], [g : 1]; \left[c + f : 1 \right], \left[c + 1 + f : 1 \right], \left[f + 1 : 1 \right]; \quad \frac{y^2}{4}, x^2, y^2, z^2.
\]

(4.10)

(xi) In (2.1), setting \(S_2(\theta_4 i + \theta_5 j + \theta_4 k) = S_3(\theta_6 i + \theta_6 k + \theta_7 p) = S_4(\theta_8 j + \theta_9 p) = S_5(\theta_{10} i + \theta_{10} k) = 1, \) we get

\[
\sum_{i,j,k,p=0}^{\infty} S_1(\theta_1 i + \theta_2 j + \theta_3 k + \theta_3 p) S_6(\theta_{11} j) S_7(\theta_{12} p) \frac{(c)_i(f)_j x^i y^j (-y)^k z^p}{(2c)_i(2f)_j i! j! k! p!}
= \sum_{i,j=0}^{\infty} S_1(2\theta_1 i + \theta_2 j + \theta_3 p) S_6(\theta_{11} j) S_7(\theta_{12} p)
\times \frac{(c + f)_i((1 + c + f)_i x^i(y^2/4)_j z^p}{(c + f)_i(c + 1/2)_i(f + 1/2)_i i! j! p!}.
\]

(4.11)

(xii) In (4.11), setting \(\theta_1 = \theta_3 = \theta_{11} = \theta_{12} = 1, \theta_2 = 2, S_1(2j + i + k + p) = (a)_{2j+i+k+p}, S_6(j) = 1/(b)_j, S_7(p) = (d)_p/(h)_p, \) we get

\[
H_4^{(4)}[a, c, f, d; b, 2c, 2f, h; x, y, -y, z]
= F_{0;3;1;1}^{1;2;0;1}(a : 2, 2, 1) : \left[\frac{c + f}{2} : 1 \right], \left[\frac{c + f + 1}{2} : 1 \right]; [d : 1]; \left[c + f : 1 \right], \left[c + 1 + f : 1 \right], \left[f + 1 : 1 \right]; [b : 1], [h : 1]; \quad \frac{y^2}{4}, x, y, z.
\]

(4.12)

(xiii) In (4.11), setting \(\theta_1 = \theta_{11} = \theta_{12} = 1, \theta_2 = \theta_3 = 2, S_1(2j + 2p + i + k) = (a)_{2j+2p+i+k}, S_6(j) = 1/(b)_j, S_7(p) = 1/(d)_p, \) we get

\[
H_4^{(4)}[a, c, f; b, d, 2c, 2f; x, z, y, -y]
= F^{(3)} \left[\frac{c + f}{2}, \frac{c + f + 1}{2}; \Delta(2; a)_2 : -; -; -; -; -; -; -; -; -; \left[c + f, c + 1 + f \right], \left[f + 1/2, f + 1/2 \right] \right].
\]

(4.13)
Generalized Neumann expansions involving hypergeometric functions

Acknowledgment

The authors are thankful to the referees for their valuable comments, remarks, and suggestions leading to a better presentation of the note.

References

M. I. Qureshi: Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India

M. Sadiq Khan: Department of Mathematics, Shibli National College, Azamgarh-276 001, Uttar Pradesh, India

E-mail address: mohdsadiq786@rediffmail.com

M. A. Pathan: Department of Mathematics, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India

E-mail address: mapathan@postmark.net
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be