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We study large-time asymptotic behavior of solutions to the Cauchy problem for a model
of nonlinear dissipative evolution equation. The linear part is a pseudodifferential operator
and the nonlinearity is a cubic pseudodifferential operator defined by means of the inverse
Fourier transformation and represented by bilinear and trilinear forms with respect to the
direct Fourier transform of the dependent variable. We consider nonconvective type non-
linearity, that is, we suppose that the total mass of the nonlinear term does not vanish.
We consider the initial data, which have a nonzero total mass and belong to the weighted
Sobolev space with a sufficiently small norm. Then we give the main term of the large-time
asymptotics of solutions in the critical case. The time decay rate have an additional loga-
rithmic correction in comparison with the corresponding linear case.
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1. Introduction. We study large-time asymptotics of solutions to the Cauchy prob-
lem for dissipative equations

ur+Nu)+£u=0, t>0,

(1.1)
u(0,x) =up(x), xeR.

The linear part of (1.1) is a pseudodifferential operator defined by the Fourier transfor-
mation

Pu =Fg . (LEVU(E)), (1.2)

and the nonlinearity N (1) is a cubic pseudodifferential operator of nonconvective type:

N =Fe x| altE)0(LE- )0 )dy
" (1.3)
+Fg-x JRZ b(t,&,y,2)u(t,&-y)ult,y —z)u(t,z)dydz,

defined by the symbols a(t,&,y) and b(t,&, v, z). Consider here the real-valued solution
u(t,x). The direct Fourier transformation J_g is

W) =Fyzu = (277)’1/ZJ ey (x)dx (1.4)
R
and the inverse Fourier transformation Fg_ is

W(x) =Fgxu= (ZTF)_I/ZJ ey (8)dE. (1.5)
R
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We suppose that the symbols a(t,&,y) and b(t,&,y,z) are continuous functions with
respect to time £ > 0 and the operators N and &£ have a finite order, that is, the symbols
a(t,&,v), b(t,&,v,z),and L(&) grow with respect to &, y, and z no faster than a power
of some order k:

ILE) [ =C@®)",  |at,§x)] =CUE+(¥) ),

|b(t,8,,2)| < C(E)*+ (¥ +(2)%). 1o

Here and below, we denote by C different positive constants (&) = /1 + &2.

Model equations (1.1) contain many well-known equations of modern mathematical

physics and describe various wave processes in different media. For example, when

N(u) =ud and Lu = —uyy, that is, a(t,&,») =0, b(t,&,»,z) =1, and L(§) = &2, (1.1)
transforms into the cubic nonlinear heat equation

U+ Ul — Uy =0, XER, t>0. (1.7)
Another example is the potential Whitham equation
Ut + (U ) + Usexx + Htixxx =0, X ER, £ >0, (1.8)

which follows from (1.1) if we take N(u) = (ux)? and LU = Uxxx + HUyyy, that is,
a(t,&,y) = —(E-»)y, b(t,§,y,z) =0, and L(§) = |E]> — i&3, where ¥ (¢p) = PV(1/
1) [(p(y)/(x — ¥))dy is the Hilbert transformation. Equation (1.8) comes from the
Whitham [21] equation

Vi +VVUx +VUxxx T HVUxxx =0, x€ER, t>0, (1.9)

when we introduce a potential u = jfoo u(t,x)dx, which vanishes as x — o if we con-
sider initial data v (0, x) with zero total mass [y v (0,x)dx = 0, therefore [ v (t,x)dx =
0 for all £ > 0 in view of (1.9).

Large-time asymptotics of solutions to the Cauchy problems for nonlinear evolution
equations was extensively studied. A great success in the study of the large-time asymp-
totics first of all was achieved by inverse scattering transform method (see [1, 3]). In
the super critical case, large-time asymptotics of solutions is similar to that for the lin-
earized case (see [2, 4, 18, 20] and the references cited therein). Critical and subcritical
dissipative equations with nonconvective type nonlinearities were considered in papers
[5,6,7,8,9,10,11, 12,13, 14, 15,16, 17, 19, 22].

In [7, 9], the Cauchy problem of the cubic nonlinear heat equation (1.7) was consid-
ered and the time decay estimate

| (t)]]» < Ct=12(log(t)) (1.10)

was shown. This result was extended to the case of the porous media equation with
critical exponents (see [8]). On the other hand, the asymptotic behavior in the time of
the positive solutions to the equation

u—Au=-u?, xeR" t>0, (1.11)
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was studied in[5, 6, 7,9, 18, 19]. In particular, in [7, 9], it was shown that if the initial data
are not negative and p = 1 +2/n, then the solution decays in time as (tlogt) /2 for any
x € R™. Itis the logt behavior that is difficult to recognize by standard methods. Gmira
and Véron [9] proceeded by making the a priori substitution v (t,x) = (log t)"™?u(t,x)
and estimating the new dependent variable v (t,x). In the present paper, we proceed
via a similar change of the solution v (t,x) = e u(t,x), where the new unknown
dependent variable @ (t) is determined by the requirement of zero total mass of the
nonlinearity (see Section 3). This condition enables us to consider a broader class of
equations and to obtain a more detailed asymptotics.

In [12], we obtained the large-time asymptotic behavior of solutions to the Cauchy
problem for the nonlinear Schrodinger equation with dissipation

wu+SFu+ilulbu=0, xeR, t>0 (1.12)

in the critical case, that is, when the symbol L(&) of the linear pseudodifferential op-
erator & has the following asymptotic representation L(E) ~ p&? in the origin & — 0,
where Rep > 0 and Imu > 0.

In [13, 16], we considered the large-time asymptotics for solutions of the complex
Landau-Ginzburg equation

u—pAu+alulfu=0, xR, t>0 (1.13)

in the critical case g = 2/n. The subcritical case g € (2/n—¢,2/n), where ¢ is sufficiently
small and depends on the size of the data, was studied in [17], where u,a € C, Reu > 0,
and y and a satisfy suitable angular conditions. In [14], the asymptotic expansion of
small solutions to the Cauchy problem for the complex Landau-Ginzburg equation was
considered.

Large-time asymptotics of equations with convective type nonlinearities in the critical
case also was studied extensively (see [15] and the literature cited therein).

The aim of the present paper is to obtain the large-time asymptotic behavior of solu-
tions to the Cauchy problem for the nonlinear evolution equations (1.1) in the critical
case. Note that the method of [7, 9] does not work for (1.1). In the present paper, we gen-
eralize the approach developed in our previous papers [10, 12,13, 14, 16, 17], where we
considered mainly the case of Laplacian £ = —A, the power nonlinearity N (u) = |u |9 u,
0 < g1 < 2/n or nonlinearity of convective type N(u) = 0y, lu|92*1, 0 < g» < 1/n, and
applied the L”-estimates of the Green operator e!® to show the positivity of the value
[N (uy)dx, where u; is the first approximation of the solution and [ (N (1) =N (u1))dx
is the remainder term in our function space. In comparison with our previous works
[12, 13, 16], we are working here in the Lebesgue spaces for the Fourier transform of the
solution in order to treat the case of nonlocal nonlinearities of nonconvective type in-
volving derivatives of unknown function and to be able to show that [ (N (1) =N (u1))dx
is the remainder term in our function space defined below. To obtain the estimates of
the remainder terms of the large-time asymptotic formulas, we have to assume that the
initial data satisfy some decay condition at infinity.



380 NAKAO HAYASHI ET AL.

Suppose that the linear operator & satisfies the dissipation condition which in terms
of the symbol L(&) has the form

ReL(E) > u{E}2(&) (1.14)

for all & € R, where u > 0, v > 0, and 6 > 0. Also we suppose that the symbol is a
smooth L(&) € C'(R) and has the estimate

[0(L(8) | = C{E}°* H(E)Y (1.15)

forall £ e R\ {0},1=0,1.
To find the asymptotic formulas for the solution, we assume that the symbol L(&)
has the following asymptotic representation in the origin:

L(E) =Lo(§) +O(IEI°™Y) (1.16)

for all || <1, where Lo () = p11E1° +ip2|E1°1E (u1 > 0, u2 € R) and y € (0,1).
We suppose that the symbols of the nonlinear operator N are such that

[0ga(t, &) | < CLE- 1 {E- V1 (E -7+ {¥}%()7) (1.17)
forall &,y eR,t>0,and L =0,1, and

|0¢b(t,E,7,2) |

(1.18)
<C{E- VY M HE-VIE- YT+ 1y -2y -2)7 + {2} (2)7)

forall &, yv,ze R, t>0,and L =0,1, where x>0, 8>0,0 =0if v=0,and o € [0,v)
if v > 0. Here and below, we denote {&} = |&]/(&), (€) = /1 + &2. We consider the case
of nonlinearity of the nonconvective type, that is, we suppose that

a(t,0,y)+0 or b(t0,y,z)+0. (1.19)

The critical case with respect to the large-time asymptotic behavior of solutions means
that

0=1+q, 60=2+B. (1.20)

We assume that the symbols of the nonlinearity have the asymptotics
a(t,0,y) =ao(y)+0({y}1*7(y)?), (1.21)
b(t,0,3,2) = bo(y,2) + O (({¥} +{z}) 7 (1) +(2)7) (1.22)

for all y,z € Rand t > 0, where y € (0,1), ap(y) is homogeneous of order «, and
bo(y,z) is homogeneous of order . For example, the equation

wet (1 (=09)" 4 p2 (=09) 00+ s (=00) " Ju o)
, _ 1.
+a1H§:lagJu + bll'I?:laEJu =0,
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where pyy > 0, p2,a1,b1 €R, u3 >0,0< 6 <V, ®x =, + 2, and B = B + B2 + B3, satisfies
conditions (1.16), (1.17), (1.18), (1.21), and (1.22). Also we suppose that the total mass
of the initial data is not zero:

~ 1
Up(0) = \/ﬁ LR Ug(x)dx + 0. (1.24)

Denote

. sz ao(y)e Lo "Lo) gy
R (1.25)

+ wGSI bo(y,z)e o020 o dy dz, 0 =1i(0),
R

where w =0 if ag # 0 and w = 1 if ag = 0. To obtain asymptotics of solutions in the
critical case, we assume below that ¥ > 0. The condition x > 0 implies the restriction
on the nonlinearity and yields the positivity of the value [N (u1)dx > 0, where u; is
the first approximation of the solution. We easily see that, for example, the equation

e+ (n (=02 4 3 (= 02) Y+ an 2 (- 02) 2w+ by 1T, (- 02) " *u =0

(1.26)
satisfies the condition » > 0 if
M1, M3,a1,b1,0 >0, o <v,
1.27
0(1+0(2:6—1, Bl+B2+B3:6—2. ( )
Define W = A%* nB%! n DO, where
@00 = ||®(§)HL§°(|§ISI)’
l@llgor = ||®(§)HL§(|§|21)! (1.28)
Iplipoo = [[10g|* @ ()l
and define the usual Lebesgue space LY = {p € ¥’; ||@||Lr < o}, where
1/p
ol = (| loto"ax) (1.29)

for 1 <p <o and [|@Q|lLe = SUpycrn | (x)| for p = co, and we define the majorant of
the fractional derivative of order y € (0,1) as

2" 6(8) = [ 1652 -$(@ |1y dy. (130)
Denote
Go(x) = Fgy(eL0®), (1.31)

In the present paper we prove the following result.
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THEOREM 1.1. Assume that uy € W with sufficiently small norm
1ol a0 +|[uollgor + [[ut0llpoo0 = €. (1.32)
Suppose that x > 0 and
0 =1(0) > 0. (1.33)

Then there exists a unique solution u(t,x) € L*((0,00) xR)NC([0,0);W) of the Cauchy
problem (1.1) satisfying the time-decay estimate

()], = CE) 19 (1+xlog(t)) > . (1.34)
Furthermore, the asymptotic formula
ot-1/° 1s g1/
u(t,x)—Tlotho(xt )+O<m) (135)

is valid for t > 1 uniformly with respect to x € R if ap(y) # 0. In the case ay(y) = 0, the
asymptotics

gt—l/a 15 ( t—1/5 )

is true for t = 1 uniformly with respect to x € R.

REMARK 1.2. The conditions of the theorem on the initial data 1o can also be ex-
pressed in terms of the usual weighted Sobolev spaces

H = L € L2 || llgm = [140)™ (i) pl|y2 < oo (1.37)
as
1
[[uolluoo +l[uollpor <& p> 3 (1.38)

However, the conditions on the initial data 1y are described more precisely in the
norm W.

To help the reader to assimilate the assumptions regarding a pair of pseudodiffer-
ential operators and the initial data, we state the following list.

ASSUMPTIONS ON £((&) = /1 +&2, {E€} = |&|/(E)). We assume the following:

(L1) L(§) € CLH(R);

(L2) ReL(&) = p{&}°(€)Y, u>0,v=0,6>0;

(L3) \E%L(E)I <C{gIP eV, 1=0,1;

(L4) (for detailed asymptotics) L(E) = Lo(E) + O (|E|°*Y) for all |E| < 1, where Ly(§) =
i IE1° +ipa |E1°1E, i > 0, 12 €R, y € (0,1).
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ASSUMPTIONS ON N. We assume the following:

(N1) a, b are continuous in t > 0;

(N2) |a(t,&,v)| < CEY<+(¥)¥), for some Kk > 0;

(N3) |b(t,8,5,2)| < CUE +{) +(2)");

(N4) [9ga(t,& )| < CLE -y}t HE-¥IME -7 + {(¥}*(¥)9), L= 0,1, x= 0,0 <
o<V

(N5) [0gb(t,€,7,2)| < C{E- ¥} ' ({E- 1B - )7 +{y - 2}F(y - 2)7 + (z}F(2)7),
1=0,1, B=0;

(N6) either a(t,0,y) =0 or b(t,0,y,z) #0;

(N7) a(t,0,y) =ao(y)+O0{y}*Y(y)9), y € (0,1), and ay(y) is homogeneous of
order «;

(N8) b(t,0,¥,2) = bo(y,2) +O(({y}+ {zHFY ((¥) +(2))?), and by (y,z) is homoge-
neous of order S;

(N9) (critical case) 6 =1+ and 6 =2+ B.

ASSUMPTIONS ON THE INITIAL DATA u((x). We assume the following:
(D1) 0 = (1/2m) J[guo(x)dx + 0;
(D2) the constant

X = OZJ ao(y)e’LO(*y)*LO(y)dy
® (1.39)

3 —Lo(-¥)-Lo(y-2)-Lo(2)
+wo JRZ bo(y,z)e ™0 0 02 dydz >0,

where w =0if ap #0and w =1 if ag = 0;
(D3) lluollgeo + 1o llgor < € for p > 1/2, and some ¢ > 0 sufficiently small.

REMARK 1.3. We now give examples of application of Theorem 1.1.

(1) In the case of cubic nonlinear heat equation (1.7) we have a(t,&,y) =0, b(t,&,v,z) =
bo(v,z) =1, and L(E) = Ly(E) = E2. The conditions (1.18) and (1.22) are fulfilled with
0 =B =0and 6 = v = 2. Then for the small initial data 1 such that 6 > 0 and the
norm |[ugllgeo + 1o llgor < &, p > 1/2, the asymptotics

0 2t ( t" )
e vt 1.4
u(t,x) Wwe 0 Vlogtloglogt (140

is true for large t.
(2) As another example, we consider the cubic nonlinear heat equation with convec-
tion

U+ UUx+US — U =0, X€ER,t>0. (1.41)

It represents an interaction of the quadratic convective nonlinearity with cubic noncon-
vective nonlinear term; both are critical. We have a(t,&,y) = &, ao(y) =0,b(t,&,v,z) =
bo(y,z) =1, and L(§) = Lo(&) = &2. The conditions (1.18) and (1.22) are fulfilled with
o=x=1,8=0,and 6 = v = 2. Then for small initial data 1y such that 6 > 0 and the
norm |[uollgeo + luollgor < & p > 1/2, the asymptotics (1.40) is true for large t. Thus
the cubic nonconvective nonlinearity dominates under convective term and defines the
main term of the large-time asymptotic behavior of solutions.
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(3) For the potential Whitham equation (1.8), we have a(t,&,y) =—(E-y)y, b(t,&,v,2)
=0,L(&) = &3 —-i&%, ap(y) = ¥2, and Lo(&) = |&|> — i&3. The conditions (1.17) and
(1.21) are fulfilled with 0 = ¢ = 2 and 6 = v = 3. Then for small initial data uy such
that 6 > 0 and the norm [[uollge.0 + | Uollgor < &, p > 1/2, the asymptotics

ot'/3

tx) = ————
ult,x) 1+xlogt

173
Go(xt™1/3 +0(7> 1.42

olx ) (logt)loglogt ( )
is valid. Note that there is no blowup for the Whitham equation (1.8), that is, all solutions
exist globally in time (see [20]) even if 0 < 0. It is interesting to know the character of
the large-time asymptotic behavior of solutions in the case 9 < 0. As far as we know,
this is an open problem.

We organize the rest of the paper as follows. Some preliminary estimates of the Green
operator solving the linearized Cauchy problem corresponding to (1.1) are obtained in
Section 2. The proof of Theorem 1.1 will be given in Section 3.

2. Preliminary lemmas. The solution of the linear Cauchy problem

u+%u = f(t,x), xR, t>0,

2.1
u(0,x) =up(x), xR (2.1)
can be written by the Duhamel formula
t
u(t) :‘§(t)u0+J G(t-71)f(t)dT, (2.2)
0
where the Green operator 4 is given by
G(t)p = Fex (e HB1H(E)). (2.3)

We first collect some preliminary estimates for the Green operator %4(t) in the norms
@ (@)|[arr = |||§|p®(t1§)”Lg(\§\sl)’
llo®)]|gs.r = |||§|S(ﬁ(t!§)||L§(\§|zl)’ (2.4)
1@ @ llpes = [[9€| "€} () P (L, D)l

where p,s € Rand y € (0,1). The norm A”'? is responsible for the large-time asymptotic
properties of solutions and the norm B*¥ describes the regularity of solutions.

LEMMA 2.1. Let the linear operator & satisfy the dissipation conditions (1.14) and
(1.15) and @ (0) = 0. Then the estimates are valid for all t > 0:

1G() @[ gop = C(t)~VO@HPHD | o] 40,4 (2.5)
forp=0ifp=qandp+1/p-1/g>0ifl1<p <q < oo;

16() @||pp.p = C(1)~HD@HHID 100 (2.6)
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forp+y>=0ifp=candforp+y+1/p>0ifl <p < oo;
16(t) @||gs.r < Ce™ W2t} || @ Igo, (2.7)
where 1l < p <o, s >0, and in the case v =0, s = 0; and

16 @llpe.s = )PPt} (I @lipoo + @l a0 + @ lgo)

(
_ _ 2
+C(E) PV (@ g0 + 1@ o) 10,

2.8)

where l < p<q<o,5s>0,p=0,andy € [0,1) is such that y < 6 if p = 0 and
y <min(p,d) if p > 0. In the case v =0, s = 0.

PROOF. By virtue of dissipation conditions (1.14), we have
1€ |e L@ | < C|E|PetHIE’ < C(1)-PI0e-tHI2IER (2.9)

forall t > 0 and |E| < 1, where p > 0. By (2.9), changing the variable n = £(t)!/%, we get
inthecase p+1/r>0,1<¥ < oo,

1/v
||‘§|pe—tL<§>HLV(|§|<1) = (J daarpe—tn(%))
I <1

1€l
1/r
< C(t)‘(l/é)(ﬂ+l/7><I dr”r”ype_mmé) (210)
Inl=(t)1/o
< C(t)~Wdlp+lr)
and for p > 0,
P ,—tL(E) _ —p/8||,—tus2151° -p/s
11E17e™ |10 g1y = CC0) e 1z s < €O, (2.11)
whence
16O @lpnr = IEI D DE Iy g1<1)
< C|||§|ﬁe—tL(§)||L§q/<q—mmsl>||QA9(§)HL§(‘§‘S1) (2.12)
< C(t>_(1/5)(p+1/p_1/q)H(P||A0,q
forp+1/p-1/g>0ifl<p<g=<wandforp=0if p =q.
Note that ¢p € C(R) if || |8§|Y¢(§)||Lgo < o0, Then applying the identity
1 y y [E] vy 213
= 5 EP | _
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via the mean value theorem, we see that for every & > 0, there exists C(&) € [0,&/2]
such that

H
[P(CE) =@ = 5 78 L/z | b(E—n) —p(E) [n-1Vdn

chyﬁg|¢(§_”)‘¢(§)Iml‘1‘ydn (2.14)
< CIEP (2| " @l -

We denote & = £ and define a sequence £, = C(£,_1) € [0,£27"] for n > 1. Since
| (8n) — b (En-1) | sCZ’"ylfly?elg [0e " (), (2.15)
we get
[$(0)=P(E)| = lim [p(En) - b(E) |
sz ()~ b (Ea )|

o (2.16)
<Clel 2. 2712 "¢ @l
ne
= CIEM|[0g " (®) I -
The case & < 0 is considered in the same manner. Thus, for all £ € R,
E @) -] =Cll|2g|" @@ lee = Cli@llpoo. (2.17)

Therefore, by (2.10), (2.11), and (2.17), via condition ¢ (0) = 0, we get

16() || ape = ||‘§|p€7u(§)®(§)||L§(|§\51)
< C||‘E|p+y€7m§)||Lg(\§\g1)“|§|7y(®(§) —@(0))HL§°<\§\£1) (2.18)

< C<t)—(1/6)(p+y+1/lﬂ) @ llpo.o

forp+y+1/p>0if 1 <p < oo and for p+y = 0 if p = . Thus, the second estimate
of the lemma is true. For the third estimate, we have by condition (1.14)

€[S |e HE | < ClE[Se W < Com WD} -sY (2.19)
for all t > 0 and |&| > 1, where s > 0. Therefore,

16O @llgsr = NIEFE P @)y g21)
=C|| IEISe’t“@||Lg(|§|21>H@(E)HLguazn (2.20)

< Ce WAL=/ | pllgosp.
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We now prove the fourth estimate. By the Leibnitz rule, we have

|0z |V ({E}P(E)5e O P (E)) < {E}P(E)e L® 0 |" P ()
N (2.21)
+jRK<t,§,n>|cp<§—n> lInl~1dn,

where
K(t,&,n) = [{E—ntP(E—n)e HEMI_{E}P(E)Te 11, (2.22)
Via the first and the third estimates of the lemma, we have
1837 (8% O 3 D (Bl = C&) #2126 " P Bl 11
+Ce_(“/2)t{t}_5/v|||a§\y®(§)||Lg(|§\zl) (2.23)
< ()Pl lipoo,
therefore,
16(0) @||pes = C(E)PIO{E} " [|@lIpoo
| IeE-m K@ Emin |
Inl>(t)-1/0 Ly
(2.24)

(@ (—m |K(t,Emni~an|

+C J
Inl<min(|E|/2,(t)~1/8

@ E-n) [K(tEmIn " Vdn||
3

+C J
[El/2<In|<(t)~1/8

We estimate the second summand in (2.24) in view of condition (1.14) and estimate

(2.17):

| |G- K(EE I Ven)
Inl>(t)-1/9 i
J \E—nlmK(t,E,n)Inl‘l"/dnH
Inl>(t)=1/6 Ly

p+y/2 sptReL® || [I& 1£02 1/2J dn (2.25)
< Cll{grrEye el @lhz ol | ooy

=[[@E-ml& llg

P EYS o~ tReLE) || (|6 1/2 1/2I dn
+C|[{g}P (€)% e 1@ @z 1ol 5o gty-1ie [T T2

1/2

1/2
||Q9HD0,0-

< C{) PRSI (|l g0 + |0 o)
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In the case |n| <min(|€|/2,({t)"1/%), we get by condition (1.15)

1
K(6Em - | |, 0 ({E—hm}? (€~ hpy*e € |

= Clnl|[(t{Z15 L) +p 1T} )T (g e HE @

LZ (ITI=[€1/2) (2.26)
< CInl{EN || (1 +HZ1 (@) (1P (g)re U’ @

L7

< CInl{E e}/ (t)=*r19,

therefore,

C'U - lcﬁ(&—n)IK(t,E,n)InI*I*mnH
[nl<min(|€|/2,(t)~1/0) e

< CLy= 0 (I pllpoo + @)l

x(\{&}y-ljl

(2.27)
nl=min(|€]/2,(t)~1/9) " " Ly

< C{ty () PP (@ lipoo + @l a0 + @ lgoss).

And in the case |E|/2 < |n| < (t)~/9, via estimate

&-n
K(LED) < C] L e LN (¢ [ L () | +piy} ) (v}Pdy

&-n 2.28
SCL (t{y1o Pty piyrHay 28

<CInlP(tInl® +p),

we obtain
il @ (= mKEEInl " dn|
[E]/2<In|<(t)~1/8 Ly

< C||CP||D0,OJ (tInl®+p)InlP~dn (2.29)
Inl=<(t)-1/6

< C(t) "%l @lIpoo-

Substitution of (2.25), (2.27), and (2.29) into (2.24) yields the fourth estimate of the
lemma. Lemma 2.1 is proved. O

Define %4y (t) by

Go(t)p = TFe_x (e BLH(E)), (2.30)
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where the symbol Ly(E) = 1 |E|% +iu2|E|9-LE is homogeneous, i, > € R, and
Go(x) = Fg_y (e L0®), (2.31)

In the next lemma, we estimate a difference 4(t) —%y(t).

LEMMA 2.2. Let the linear operator & satisfy conditions (1.14) and (1.16), then the
estimates

[1(G(t) —Go (1)) Pl ap.p < C()~ PNV ]| o,

~ (2.32)
[[Go(t)p— £ 12 (0)Go (E712(+))||apw < C{E)~PENIO=LIOP b1 00

are valid for allt > 0, where 1 <p < o0, p >0, andy €1[0,1) is such thaty <6 if p =0
and y <min(p,?d) if p > 0.

PROOF. By virtue of the dissipation condition (1.14) and asymptotics (1.16), we have

tLo(8) s s
|e tE e tho®] = U e"’drl‘ < Ct|L(E) —Lo(§) |e " < Ct[g[>Ye CtEl
tL(E)
(2.33)
forall t > 0 and |&| < 1, whence
1(6(0) = S0 bllarr = [[1E1° (e e 10@) S(E) Iy g1
_~ S ~
< Ct||1g|orerve-cu HLg(‘glsl)||¢(§)||L§°(I§\sl) (2.34)
S R U
Thus, the first estimate is true.
We prove the second estimate by (2.9) and (2.17); we get
160 ()=t 12 (0)Go (712 ()| avwr
= [[IE1Pe 0 (S (E) = POz g1,
(2.35)

< Cll1g1P e 0@ | ey [[1EI (D (E) = B(0)) Iz g <)

< C(t)’(“")/‘s*l/‘s”II(b\IDo,o.

Therefore, the second estimate of the lemma is valid. Hence, lemma 2.2 is proved. O

In the next lemma, we estimate the Green operator 4(t) in our basic norms || - ||x and
I - Ily which depend on the order of L(&) (see conditions (1.14), (1.15), and (1.16)) and
on the symbols a and b (see (1.17), (1.18), (1.21), and (1.22)), namely, they depend on
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0, Vv, «, B, o,and y which are defined as follows:

pllx=sup  sup(t) P V|| (t)|spn
pel-y,a+y] t>0

+ sup  sup(t)?"?||p(t)|| s
pel0,x+y] t>0

+ sup sup sup{t}/V ()OO (1) |
se€[0,0] 1sp<eo t>0

+ sup sup sup{t}/Y ()P p(t)]|pp., (2.36)
p=0,0,8 s€[0,0] t>0 )

lplly = sup Su(1)3<t>”“5’7||¢(t)||Ao,p

l<p<oco (>

+ sup sup(t)Y/OHIOP LIV b (t) |gos
l<p<co t>0

+su0p<t>1‘y/‘5{t}‘”v||<l>(t)||no,0'
t>

where y € (0,min(1,9)) is such that y < & if « > 0 and y < B if B > 0. Define the
function g (t):

gt) =1+«klog(t) (2.37)

with some k > 0.

LEMMA 2.3. Let the function f(t,x) have a zero mean value f(t,O) = 0. Then the
inequality

oo I;g‘l(T)‘@(t—T)f(T)dTHX <ClIflly 2.38)

is valid, provided that the right-hand side is finite.

PROOF. Via the condition of the lemma for the function g(t), we have the estimate
(t)7v/*0 < Cg~'(t) and since the limit lim;_ (g (t)/g(~/f)) exists, so

sup g ' (t)<Cgl(t). (2.39)
Te[VEL]

Hence, by virtue of the first two estimates of Lemma 2.1 and (2.39), we obtain for p €
[-y,x+ylifp=1land p €[0,x+y]if p=o0

[facome-mrine],.

NG
< CJ (t =)~ PHVI6=110p (7 \Y /-1y =SIV 4r
0

><sug(T)l_y/‘s{T}s/VHf(T)||D0~0
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t/2
+ Cg‘1 (t) J (t - T)—<p+y>/5—1/6n(-r)y/6—l {T}‘S/"d'r
NG

><sug(T)l_"/‘s{T}S/v||f(T)||D0v0

t
+Cg’1(t)J (t—T) POy~ Vor-1g¢
t/2
x sup{T) 0P| £(T)|| gour
>0

< C(ty PIO1oP ((£) Y120 4 g () I flly

< Cg H(E) () P17 fly.
(2.40)

Similarly, by the third estimate of Lemma 2.1, we get for s € [0,0], 1 < p < o0, and
t>0,

t
JO gl MYt -1)f(t)dT

BSP

t
<C e*(H/Z)(t*T) -1-y/o6-1/6p t— —s/v 70'/vd
JO (1) (-1} () Vdr o)

x sup(T) ! FY/OFOP (I IV|| £(T)]|go.p
>0

< C(O) YR S fly

Finally, by the fourth estimate of Lemma 2.1, we find for p = 0,«,8, s € [0,0], and
t>0,

t
| o msw-nrmar|
0 DS
t
< CL dt(t—1) P {t—1} Vg (1)
X ([1£ T llpoo + ILf () a0 + ILF (7)o ) (2.42)
t
+CJ AT (t—T) PIOTYI204t 1} =sIVg=l(T)
0
< (ILF (O 00 + £ (O go) 211 (O [0
Using (2.39) and the norm Y, we have
t
|[ a7 o -mrpan|
0 DS
NG
SCIfly [ (=) Pt gy s oy ol

t
+C||f||Yg_l(t) Jﬁ(t_T)_p/5<T)y/6_1{t—T}_S/V{T}_U/VdT
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VB
+C||f||YJ' (t =) PIO+YI20 (yYI20-1gp  py=sIVig1=0/V T
0
t
+ClIfllyg™ (1) J[(t—T>7p/6+y/25<'r)y/25*1{t_T}*S/V{T}fo'/vdT
t

< ClIflly it} sy =P10 (1) y/142 1 g=1(1))

< Clfllyg= () {ty=s/v(eyr=rro,
(2.43)

Whence the results of the lemma follow. Lemma 2.3 is proved. O
Now we estimate the nonlinearity & (1) in the norms A%?, B%? and D%0.

LEMMA 2.4. Let the nonlinear operator N satisfy conditions (1.17) and (1.18). Then
the inequalities

W (@)]|a0n = C|@®)|aar + @ (®)][goa) ([ ()] | a0n +[|@ (1)][go.)
+C([|@O)[ag1 +[|@ )lgo1) (@ ()] g01 + @ (©)][50.1)
x ([l ()] g0p + 1@ (1) |[go),

IN (@) llgor =< C(|@ (O gacrva + @ DO)[goa) (|9 (D) a0 +1]]P (E)[go.r)
+C([l@®)|acr +le (O)lgo1) (@ (D)l |avp + 1@ (E)llgor )
+C([l@ ®)]|apera + @ Olge1) (1@ (O a0 +[1P (O)]]g0r)
x ([l@ ®)]|a01 +[|@(0)]|gor)
+C([l@®)lap1 +11@O]go) (1@ O] ave +[|@ ()] [gor)
X (ll@@®)ls01 +[l@®)]lgor),

IV (@)[lpoo = Cll@ ()lpao ([l (0)]| 01 + [ (©)]go.1)
+Clle @®)[poo ([|@ )| et + [l ()][gor)
+C(ll@ ®)]|aaya + @ O]lgo) (1@ ()| s00 + [ ()][go.)
+C([l@®la-va +[l@®)lgor) (@ )| saes + 1@ (8[| )
+Cll@ (0] pgo (@ (0|01 +[|@(0)][go1)*
+Cllo®)lpoo ([l (®)|ap1 + 1@ (0)]]gon)

X (Il @) [ a0 + [l (@) |lgo.r)
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+C(ll@ ®)|ap-ra +ll@ ®)[ge1) (@ (0] g0, + [ ()]0, )
x([l@ ®)]|a01 +[l@(©)]]po)
+C([l@@®la-va +l@®)lgor) (l@ (D) [|ap + [l (1) [go )

X ([l @) | a01 + [l (@) [|go.r)

(2.44)
are valid for 1 < p < o, provided that the right-hand sides are bounded.
PROOF. By virtue of conditions (1.17) and (1.18), we obtain
W@lor < ||| laen1owE-moemlay| ,
R Le (1€1=1)
] b gyl 190 E-newy -2 dvaz| ,
R2 L7 (IE1=1)
<c| [ (E-»7g- 31+ 71 x P E- M@y,
R L (El<1)
+CHLR2 (E-M7E-yIFP +(y-2)7{y -2} +(2)7{z}F)
x|@tE- NP,y -2)P(t,2)|dydz|| |
LE (1E=1)
(2.45)
and by the Young inequality, we have the estimate
\[ s-»wmay|,
R Ly (18]=<1)
<[ ee-vwonar||, ] eE-rwmay (2.46)
lyl<1 Lg (IEl<1) lyI>1 Lg(IEl=1)
< CH(I)HL%”"””L?(IEISI) +C||¢HL%”(I/“L§°(I§\>1)|
whence it follows that
||N((P)||A0,n = CH@)U{E}D(@U,E)HL%
X(H(ﬁ(t!E)HLg(\agl)+H®(t!§)||L§°(\§|>l))
+C||(§>"{§}Bq3(t,§)||%
X (H(ﬁ(tf)HLg(\g\g) +Hd\)(t!g)HL?(\Ebl))||®(t:§)”Lé (2.47)

< C(ll@®lawt +ll@D)][go ) (Il@ (O] a0 + [|@ (0] g0 )
+C(Il@Ollasa + 19 Ollgoa ) (112 Lo + 190501
x ([l () |aos + [l () [go )
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In the same manner,

[N (@)]|gow < 'Umsl/z la(t,& ) || @t E-y)P(t,y)|dy
+|
d

Lg (1E1=1)

[ latenllewE-mewnlay|
ly|=1/2 Lg (I81=1)

| pEEY.2)]
|yI+lzI<1/ (2.48)

< |®tE-y)P(t,y-2)P(t,2)|dydz|
Le (IE1=1)

.

J [b(t,E,7,2)]
[yI+lz|=1/2

X[ Qt,E-)P(t,y-2)P(t,2)|dydz| .
L (E1=1)

Whence

6@ lgor = CHjym{z—y}ma—yr’{&—y}“+{y}“)

x|@t,E-»)@t,y)|dy

14
Ly (1€1=1)

*CH VP ((E= T {E= 1%+ (1) {}%)
lyl=1/2

x| QtE-MPt,y)|dy|
LE (El=1)

+C‘ {E- VP ((E-T{E- ¥} +{y -z} +{z}F)

J\y\ﬂzlsl/z
X |t E-y)@(t,y—-2)P(t,z)|dydz

LE (El21)

({y -z} +{z}Y)

+C‘

J\y\HzIZI/Z
x (E-ME-y¥ +(y-2)7 1y -2}F + (2)7{z}F)

x|®t,E-»@(t,y-2)®(t,2)|dydz|| , .
Lg (IE1=1)

(2.49)
Therefore,
IV (@) [gor < CH(g)U{g}MY@(ﬁE)HL%||q3(ts§)||L§
+CIHEY @Ol ()7 1D, )l

< C([le@|[gxsrva +[[@O]lges) (@ (O] a0r + @ (@) [gor)
+C([[@0)]| gt + @ ()|[go1) (1@ ()| ar.e + @ (0)][gor)
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+C([l@ ®)|ap+ra + 1@ ®lger) (I ()| a0.r +[]@ (©)]go.r)
*([l@ @®)]|a01 +[l@ (©)]]go1)
+C([l@®)lap1 +11@ O ]lgo) (@ O] ave + @ ()][gor)

x([l@ ()] g01 + @ (D)]]go1),
(2.50)

whence the first two estimates of the lemma follow.
Denote
A(t,€,y) = alt, &) ({E- Y} (E- )7 +{¥}* (),
®(t,8,y) = ({E-yIE-T+{¥1*M)PHLE-»)P(t,y),
b(t,§,7,2) =b(t,§,2,2) ({E- V}FE- T +{y -2}y -2)7 +{z}F(2)7)"!, @.51)
Y(t,8,5,2) = ({E- Y (E-»)T+{y -z} (y —-2)7 + {2} (2)7)
XQt,E-y)P(t,y —2)P(t,z).

We have

N @lloa = || 12¢]” [ dct.gmaegvay]|
R LE

+H|a§|yj b(t,€,v,2)¥(t,E,y,2)dydz
R2 L?

<d|[ ewz o anz ]
3

(2.52)
wd|| [ Hel o g sy
£
+C I Z\Y(t’g’y’z)|a§~yz(t!§lyyz)ddeH .
R L§
+C IZ [Iag|y,‘I’(t,‘é,y,z)]%(t,g,y,z)dydzH .
R LE
where the commutators
[1og|”,@(t, &, )AL, E )
~ (2.53)
= | 18(t,E-n2) - 8(t.EY) At E-n,3)In " Vdn,
and similarly,
[1g |, ¥ (t,E,7,2)]b(t,E,y,2)
(2.54)

= J[R Y (t,E-n,7,2)-¥(t,E,2) |b(t,E-n,¥,2)Inl"'Vdn.
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By virtue of condition (1.17), we estimate the commutator
[ teel” e macemay|
R Ly
<d|[ [ 10w E-ny-ewE i anay|
Le
<c|] ol -y -mepE- ey
3
wd||[, ol ot g-r) 13 <y>f’<p<ty>dyH
= Cllog g1 @ POl |9, By
+ClHo P @Bl 1HEY (€)1, 8y
< Cll@ ()]lpae ([l@(O)]|a01 +1l@()|[go1)
+Cll@ (0)lpoo ([l@ ) || get + @ () |[go1).-
In the same manner, by (1.18), we get
[, toel ¥ty 2Bt 2y de]|
3
< Clle®lpse (1@ (0)]]x01 + 1@ (0)]lgor)?
+Cll@ ) [poo ([l @) || ap1 + @ (1)][go1)
X (@ ()] a01 +[|@(O)][go.r)-

Via (1.17), we have

|&(t1§_n|y) a(tgy)| |]+y

< CJ dn
Inl=(1/2){g-3 NIty

Jmlz(l/Z){%—y}

<C{&-y}7,

|ﬁ(t5§_n1y “(tgy)||n|l+y

E-y-n
j €y e |
&~y

J\rIIS(l/Z){‘E—y}

|1+y

C{&-»y17.

< CJ
Inl=<(1/2){&-y}
< C{E—y}‘lj

Inl<(1/2){E-¥} ln\y =

Thus, we have the estimate

|og|Ya(t,E,y) = JR ladt,E—n,y)—at,gy)|Inl""Ydn<C{E-y}Y

(2.55)

(2.56)

(2.57)

(2.58)
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for all &,y € R. Therefore,
HJ <I>(t,§,y)laglyﬁ(t,&y)dy”
R Lg’
<c| [ - rrrg-mr e - yay|
Lg
|| E- R E- G| |
R L§
< g @@y [@ D g
+CIHEY DBl E1(E) D (2,8

= C(”q)(t)HAafy,l + ||Q9(t)HBffv1)(H(p(t)HAO:m + qu(t)”BOvm)

+C([[@@®[a-v1 +l@ @ lgo1) ([[@ (O] s +[[@ (D)o )-

Similarly, we obtain

“JRZW(t,E,y,z) |0g|"b(t,€,y,2)dy dz

L
< C(|l@ )] gp-ya + IIW(t)IIBo,l)(IIQD(tE)HAo,w +]|@(0)]]go)

X (lo ()] a0 +[|@ () ||go.1)
+C([l@@®)][ava +[@®]lgor) (@ (D) gp. + @ (0)][po)
X (ll@@®)]|x01 +[@(@)][gor)-

In view of (2.52), (2.55), (2.56), (2.59), and (2.60), we get

[IN (@) [poo = Cll@ () |lpae ([[@ ()| g00 +[|@(0)[[go)

+Cll@ ®)Ipoo ([|@ ()| s + [l (O)][go)
+C([|@ )| gevr +[[@(O)[go1) (| ()] a0 + || (D)][pos)
+C(lle O]|sva + @ @®lgo) ([[@ ()| g +[|@ ()] |go.)
+Clle®llpse (19 (D) |01 + (|9 ()] lgor)*
+Cll@ (O ]lpoo (||@ () [[as1 +[|@ (0)[[go1)
X ([l@@®)]|s01 +[|@@)][gor)
+C(leO]|pp-ya + @O [go1) ([[@ ()] g0 + [P (8)[[g0.s)
X (lp ()] a0 +[|@ () ||go1)
+C(lle O]|ava + @@ gor) ([[@ (D) ase +[|@ (D))
X (|l ()] a0 + [ ()] [go.).-

Thus, the third estimate of the lemma is true. Lemma 2.4 is proved.

397

(2.59)

(2.60)

(2.61)
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The next lemma will be used in the proof of Theorem 1.1 to evaluate large-time
behavior of the mean value of the nonlinearity in (1.1) in the norms A%?, B%? and D%°.
We use the notations

No(®) = Fex L@ a0 ()L E- )P (t,y)dy

(2.62)
fFe | o2, 2B(EE- DY - 2Pt 2)dydz,
where w =0 if ag # 0 and w =1 if ag = 0. We also define as above
¥ = QZJ ao(y)e—Lo(—w—Lo(y)dy
N (2.63)

+w93j L bo(y,z)e ot o2 @ gy dz > 0,
R

where 0 =1 (0) and g(t) = 1 +xlog(t).

LEMMA 2.5. Let the linear operator & satisfy conditions (1.14) and (1.16) and the
nonlinear operator N satisfy conditions (1.17), (1.18), (1.21), and (1.22). Assume that
U is such that the norm ||[upll g0~ + l[ugllpoo = €. Let the function v (t,x) satisfy the
estimates

lvix < Ce, (2.64)
v () —4(t)uol|ppr < Celg L(t)(t)y-rlo-1lop, (2.65)
where p € [0,x] and 1 < p < .
Then the inequalities
b — cel
‘1+J Nl(v)(T,O)dT—xlogt' < T1og(g(t))+Ce2 (2.66)
0
ifapg =0 and
t C84
‘1+J Nz(v)(T,O)dT—xlogt' < Tlog(g(t))+Ce3 (2.67)
0

if ap =0 are valid for all t > 0.
PROOF. By Lemma 2.4 and in view of the condition (2.64), we get
t t
|| Fwimodr| < [ IN@)l-dr

t
< C|\U||§J0{T}’“/Vdr (2.68)

< Csztl“’/",
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whence estimates (2.66) and (2.67) follow for all 0 < t < 1. We now consider ¢t > 1. By
Lemma 2.2 and via the condition of the lemma, we get

[v(T) =0T 2Go (771 ()| gpr
=< CHU(T) —(g(T)MOHApm

+19(T)uo — 0T V0Go (T2 () || gowr

(2.69)
< Ce2g 1 (T)(T) PO 10P 4 C(T) =P H¥0=110P |y yoro
+C(T) O |y o0
< Ce(T) PO (eg™1(T) +(T) V0 +(T)7V/9)
for all T > 0, where 1 < p < c and p > 0. By condition (1.17), we get
Hl (@(r,0,3)=a0()9(r, =)0 (r.3)dy
yl<
< cj VI BT, =3) | |6, 9) | d
Y l V0T, ) |dy 2.70)
< Cllv (D) aet [[V (D) [ sy
< Ce¥{r}olv(g)y-L-vio
for all T > 0. In the same manner, via (1.18), we obtain
‘ J (b(7,0,5,2)=bo(¥,2))0(T,-y)0(T,¥ —2)0(T,2)dydz
lyl+lzl<1 (2.71)
< Ce3 Tyl (T)y~1-v/9,
Further we find
| NT(@)(T,0) = Fr—g (No (0T V0 Go (xT711%))) (1,0) |
< ‘ Jl | 1(a(T,O,y)—ao(y))ﬁ(T,—y)ﬁ(T,y)aly‘
y|<
" U ao(y)(ﬁ(T,—y)ﬁ(T,y)—Qze_TLO(_y)_TLO(y))dy‘ (2.72)
|yl=<1 .

4 l lelzla(T,O,y)ﬁ(T,—y)ﬁ(T,y)dy’

+0°

J ao(y)e’“"(’”’“o‘”dy‘
ly1=1
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when aq(y) # 0, and if ag(y) = 0, we have
| N2 (V) (T,0) = T (No (0T 12 Go (xT-1/%))) (1,0) |

= U\ +121 1(b(T’O’y’Z)_bO(y’Z))ﬁ(T’_y)ﬁ(T,y—Z)ﬁ('r,z)dy’
yit+izi=

+ ‘ J bo(y,z)(ﬁ(T,—y)ﬁ(T,y—z)ﬁ(T,z)
lyl+lzl=1

(2.73)
_ 938,“0(,),),“0(y,z),TLO(Z))dy dz

+ ‘ I b(1,0,y,2)0(T,-y)0(T,y—2)0(T,2)dydz
[yl+lz|=1

+ 63

I bo(y'Z)e*Tlo(*y)*TLo(J’*ZFTLo(Z)dy dz ',
[yl+]z[=1

whence, applying (2.69), (2.70), and (2.71), we obtain

| N1 (W)(7,0) = Feg (No (0T 0Go (x771/9))) (7,0) |
< CeHTI M) Cllu (1) =0T 0 G (T2 ()| p0
X (Il (™) [awa + 10T Go (T2 () [|awa) (2.74)
+Cllv (T [goa [V (7)o

+CO*||T10Go (T2 () [[gaat [[T 72 Go (1712 () [goe -
Thus,

| K1) (1,0) = Fxg (No (0772 Go (x771/%))) (7,0) |
< Ce Ty (T) e
(2.75)
+CeX(T) Heg (1) +{T) V04 (T) )

+CE{t} Oy YO L Ce o) TV,
In the same manner, we get

| N2 (V) (T,0) = Fxg (No (0T V9Go (xT7119))) (T,0) |
< Ce3{T} oIV (r)y-1-v/o
(2.76)
+CeNT) (g™ (1) +(T) VO (1) V?)

+CE{L} V()Y CE (e} POy YR
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for all T > 0. By an explicit computation, we have
Fre(No (0T V9Go(xT71%))) (T,0)
= QZJ ao(y)efﬂ_o(—y)fﬂo(y)dy
R

+w93J bo(v,z)e To(=)-Tloy=2)-TLo(2) g, j 7
R? (2.77)
=0°77! Jﬁo(y)e*“(*”*o(”dy
3.-1 —Lo(=y)-Lo(y—-2)-Lo(2)
+w0’T I[RZ bo(v,z)e dydz
1

=x1 1,

where w = 0 if ag # 0 and w =1 if ag = 0. Therefore, we obtain

t/-\
U Nl(v)(T,O)dexlogt’
1

t
5C53J Al

1 7(1+xlog(t)) (2.78)

t t
+C52J T’l’w‘sdT+CeZJ Ty ge
1 1
3
< %log(1+xlog(t))+C52
forall t > 1if ag + 0 and

¢ 4" art
‘ LN(v)(T,O)dT—xlogt‘ <Ce L 7(1+xlog(t))

t t
+C53J T—l—y/édT+Cg3J 1S gt (2.79)
1 1
4
< CTElog(1+>:log(t))+Cs3

for all t > 1 if ag = 0. Whence in view of (2.68), the result of the lemma follows.
Lemma 2.5 is proved. |

3. Proof of Theorem 1.1. For the local existence of classical solutions for the Cauchy
problem (1.1), we refer to [2]. We make a change of dependent variable u(t,x) =
e Wy (t,x), then we get from (1.1)

Vi+Pv+e PON (V) +e 22O N, (v)—@'v =0, (3.1)
where

N1 () =§HJ a(t, &)t E—y)ii(t,y)dy,
R 3.2)
N2 () = Fex sz b(t,E,y,2) At E-V)i(t,y - 2)0(t,2)dy dz.
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Now, we require that the real-valued function @(t) satisfies the following condition
expressed in terms of the Fourier transform:

e PO N (V) (£,0) +e 22O [, (V) (£,0) — @ D (t,0) =0, (3.3)

whence, via (3.1), we get

a .
Ev(t,O) =0 (3.4)

for all £ > 0. Therefore,
e PO [ (V) (t,0) +e 2PN, (V) (t,0) = @' D(0,0). (3.5)
If we choose the initial condition ¢ (0)= 0, we have
0(t,0) =0(0,0) = e P14 (0) = 0 (3.6)

and we obtain the following system:

Vit P = —e P (Nl(v) _ %ﬁl(v)(t,m)

e 29 (Nz(v) - BJ\TZ(v)(t,O)>,

0 (3.7)

Q'(t) = *e “POR (V) (£,0) + = 672"’ DN (v)(t,0),
v(O,x) =up(x), ®(0) =
Multiplying the second equation of system (3.7) by the factor e?®) then integrating with

respect to time t > 0 and making a change of the dependent variables v = 4(t)ug+vr
and e®® = 1y (t), we get the system of integral equations

¢
—J hiH(m)%Y(t-1) f1(T)dT,

(3.8)
hy _1+QJ (J\f](v)+ (T )Nz(v)>(T 0)dr,
where
Filt) =Ny (v )—%m( )(t,0)
V(t) ~ (3.9)
D (t) (Nz( -G, o))

In the case ag = 0, we denote e2P) = h,(t) and obtain the following system of integral
equations:

t
‘J hy ' (0)G(t 1) f2(T)d,
(3.10)

h2—1+2—9 ( o (T)N (V) + 2 (v) ) (T,0)d,
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where
v(t) ~ 1 v(t) ~
f2(t) = Nl(v)—TNl(v)(t,O)Jr hz(t)(N (v)—TNz(v)(t 0)) (3.11)
Denote

st (r, ) (t) = J h (OG- fi(mydT, j=1.2,

(3.12)
B (7, hl)(t)—1+9J (.Nl(v)+ e )Nz(v)>('r 0)dTt
in the case ay + 0 and
1
B (r,ha) (1) = 1+ 55 | ( o (1) () + 12 (0)) (1,0)dT (3.13)
in the case ag = 0. We prove that (s4;,%;) is the contraction mapping in the set
X= {T € C((0,0);D*?), h; € C((0,0)):
1 (3.14)
llg(O)r(t)]]x < Ce?, 59(1) = hj(t) <2g(t) Vt > o},
where
Iplix = sup  sup(t) V|| (t)]] ypn
pel-y,x+y] t>0
+ sup suop (£)P12]|p (£) || ppres
t
pel0,x+y] t> (3-15)

+ sup sup sup{t}/V(e) YOO | (t)][gs
se[0,0] 1=sp=<eco t>0

+ sup sup sup{t}*V ()P0 (1)||pes;
p=0,0(,B s€[0,0] t>0

here y € (0,min(1,0)) is such that y < x if « > 0 and y < B if B > 0. First we prove
that the mapping (s{;,%;) transforms the set X into itself. When (v, h;) € X, we get by
Lemma 2.4

N1 (0) + ;N2 )]y < Ce?, va

Nw)(, 0>H <Ce, (3.16)

where the norm

lplly = sup sup(t) 1P| | (t)]|sop

l<p<co t>0

+ sup sup(t)! Y/ OFOP Y] |¢b (1) [go.p (3.17)
l<p<co t>0

+sug(t)l’yw{t}”/v||<i>(t)HDo,o-
t>
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Hence,

< (Cée?,
Y

=205, 1 v
||f1||Y—HN1 V) Fi(w)(t,0)+ h1<t>(‘”2“’) 9 Nz(v)(t,o))

v(t) ~

1 folly = HM( )= LR @) 1,0+ (w2 () - ﬁN2<v><to>)HYscs2.

1
Vho (t) 0
(3.18)

Therefore, applying Lemma 2.3, we get the estimates

t
[lg)st;(r,h;)(t)]|x < CHg(t) JO hJ_'l(T)(g(t—T)fj(T)dTHX <Cllfilly =Ce. (3.19)

Furthermore, when » € X, we have the estimates ||v|lx < Ce and ||g(v —%4(t)uo)llx <
Cllgrllx < C&2. Via Lemma 2.5, we obtain (2.66) if ao # 0 and (2.67) if ag = 0. Hence,
1

gg(t) <h;(t) <2g(t) (3.20)

for all ¢ > 0. Thus, (s4;,%;) transforms the set X into itself.

In the same manner, we consider the differences «(;(r,h;) — s (¥, PNLJ) and B;(r,hj) -
B (7, h i) to see that the transformation (¢4, %) is the contraction mapping. Therefore,
there exists a unique solution (,h;) of the system of integral equations (3.8) in the
space X. From Lemma 2.5, we see that

hj(t) = xlogt+ O (loglogt) (3.21)

for t — . Therefore, via formulas u(t,x) = e P v (t,x) = e PV (Gvy +7), we obtain
the asymptotic formula of the theorem. Theorem 1.1 is proved.
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