ON A HIGHER-ORDER EVOLUTION EQUATION
WITH A STEPALEV-BOUNDED SOLUTION

ARIBINDI SATYANARAYAN RAO

Received 12 June 2003 and in revised form 5 August 2004

We study strong solutions $u : \mathbb{R} \to X$, a Banach space X, of the nth-order evolution equation $u^{(n)} - Au^{(n-1)} = f$, an infinitesimal generator of a strongly continuous group $A : D(A) \subseteq X \to X$, and a given forcing term $f : \mathbb{R} \to X$. It is shown that if X is reflexive, u and $u^{(n-1)}$ are Stepanov-bounded, and f is Stepanov almost periodic, then u and all derivatives $u', \ldots, u^{(n-1)}$ are strongly almost periodic. In the case of a general Banach space X, a corresponding result is obtained, proving weak almost periodicity of $u, u', \ldots, u^{(n-1)}$.

2000 Mathematics Subject Classification: 34G10, 34C27, 47D03.

1. Introduction. In this paper, we are concerned with an nth-order evolution equation of the form

$$u^{(n)} - Au^{(n-1)} = f.$$ (1.1)

Here $A : D(A) \subseteq X \to X$ is an infinitesimal generator of a strongly continuous group, $f : \mathbb{R} \to X$ a given forcing term, X a Banach space with scalar field C, n a positive integer, and \mathbb{R} denotes the set of reals. We will give suitable assumptions to ensure that almost periodicity of the forcing term f carries over to the solution u and its derivatives up to order $(n-1)$.

The reason for studying this rather special evolution equation may be classified as a first pilot study of the issue of higher-order evolution equations, which probably has not been studied before.

We first recall the relevant concepts. A continuous function $f : \mathbb{R} \to X$ is said to be strongly (or Bochner) almost periodic if, for every given $\varepsilon > 0$, there is an $r > 0$ such that any interval in \mathbb{R} of length r contains a point τ for which

$$\sup_{t \in \mathbb{R}} \| f(t + \tau) - f(t) \| \leq \varepsilon.$$ (1.2)

Here $\| \cdot \|$ denotes the norm in X.

A function $f : \mathbb{R} \to X$ is called weakly almost periodic if $x^* f(\cdot) : \mathbb{R} \to C$ is continuous and almost periodic for every x^* in the dual space X^* of X.

We will call a function $f \in L^1_{\text{loc}}(\mathbb{R},X)$ Stepanov-bounded or briefly S-bounded if

$$\|f\|_S \equiv \sup_{t \in \mathbb{R}} \int_t^{t+1} |f(s)| \, ds < \infty.$$ (1.3)
We will call a function \(f \in L^{1}_{\text{loc}}(\mathbb{R}, X) \) Stepanov almost periodic or briefly \(S \)-almost periodic if, for every given \(\varepsilon > 0 \), there is an \(r > 0 \) such that any interval in \(\mathbb{R} \) of length \(r \) contains a point \(\tau \) for which
\[
\sup_{t \in \mathbb{R}} \int_{t}^{t+1} \| f(s + \tau) - f(s) \| ds \leq \varepsilon.
\]
(1.4)

We denote by \(L(X, X) \) the set of all bounded linear operators on \(X \) into itself. An operator-valued function \(T : \mathbb{R} \rightarrow L(X, X) \) will be called a strongly continuous group if
\[
T(t_1 + t_2) = T(t_1)T(t_2) \quad \forall t_1, t_2 \in \mathbb{R},
\]
(1.5)
\[
T(0) = I = \text{the identity operator on } X,
\]
(1.6)
\[
T(\cdot)x : \mathbb{R} \rightarrow X \text{ is continuous for every } x \in X.
\]
(1.7)

We recall (e.g., from Dunford and Schwartz [4]) that the infinitesimal generator \(A : D(A) \subseteq X \rightarrow X \) of a strongly continuous group \(T : \mathbb{R} \rightarrow L(X, X) \) is a densely defined, closed linear operator.

An operator-valued function \(T : \mathbb{R} \rightarrow L(X, X) \) is said to be strongly (weakly) almost periodic if \(T(\cdot)x : \mathbb{R} \rightarrow X \) is strongly (weakly) almost periodic for every \(x \in X \).

Suppose \(A : D(A) \subseteq X \rightarrow X \) is a densely defined, closed linear operator, and \(f : \mathbb{R} \rightarrow X \) is a continuous function. Then a strong solution of the evolution equation
\[
u^{(n)}(t) - Au^{(n-1)}(t) = f(t) \quad \text{a.e. for } t \in \mathbb{R}
\]
(1.8)
is an \(n \) times strongly differentiable function \(u : \mathbb{R} \rightarrow X \) with \(u^{(n-1)}(t) \in D(A) \) for all \(t \in \mathbb{R} \), and satisfies problem (1.8).

Our first result is as follows (see Zaidman [7, 8] for first-order evolution equations).

Theorem 1.1. Let \(X \) be reflexive, \(f : \mathbb{R} \rightarrow X \) continuous, \(S \)-almost periodic, \(A \) an infinitesimal generator of a strongly almost periodic group \(T : \mathbb{R} \rightarrow L(X, X) \). In this case, if, for the strong solution \(u : \mathbb{R} \rightarrow X \) of problem (1.8), both \(u \) and \(u^{(n-1)} \) are \(S \)-bounded on \(\mathbb{R} \), then \(u, u', \ldots, u^{(n-1)} \) are all strongly almost periodic.

Our second result refers to a weak variant of our first theorem in the case of a general—not necessarily reflexive—Banach space \(X \).

Theorem 1.2. Suppose \(f : \mathbb{R} \rightarrow X \) is an \(S \)-almost periodic (or a weakly almost periodic) continuous function, \(A \) an infinitesimal generator of a strongly continuous group \(T : \mathbb{R} \rightarrow L(X, X) \) such that the conjugate operator group \(T^* : \mathbb{R} \rightarrow L(X^*, X^*) \) is strongly almost periodic. If, for the strong solution \(u : \mathbb{R} \rightarrow X \) of problem (1.8), both \(u \) and \(u^{(n-1)} \) are \(S \)-bounded on \(\mathbb{R} \), then \(u, u', \ldots, u^{(n-1)} \) are all weakly almost periodic.

Remark 1.3. For some examples of first-order and higher-order evolution equations with strongly almost periodic solutions, the reader may wish to consult Cooke [3] and Zaidman [9].
2. Lemmas

Lemma 2.1. If A is the infinitesimal generator of a strongly continuous group $G : \mathbb{R} \to L(X,X)$, then the $(n-1)$th derivative of any solution of (1.8) has the representation

$$u^{(n-1)}(t) = G(t)u^{(n-1)}(0) + \int_0^t G(t-s)f(s)ds \quad \text{for } t \in \mathbb{R}.$$ \hfill (2.1)

Proof. For an arbitrary but fixed $t \in \mathbb{R}$, we have

$$\frac{d}{ds} [G(t-s)u^{(n-1)}(s)] = G(t-s)[u^{(n)}(s) - Au^{(n-1)}(s)]$$ \hfill (2.2)

$$= G(t-s)f(s) \quad \text{a.e. for } s \in \mathbb{R}, \text{ by (1.8)}.$$

Now, integrating (2.2) from 0 to t, we obtain

$$\int_0^t \frac{d}{ds} [G(t-s)u^{(n-1)}(s)]ds = \int_0^t G(t-s)f(s)ds,$$ \hfill (2.3)

which gives the desired representation, by (1.6).

Lemma 2.2. If $g : \mathbb{R} \to X$ is a strongly almost periodic function, and $G : \mathbb{R} \to L(X,X)$ is a strongly (weakly) almost periodic operator-valued function, then $G(\cdot)g(\cdot) : \mathbb{R} \to X$ is a strongly (weakly) almost periodic function.

For the proof of Lemma 2.2, see [6, Theorem 1] for weak almost periodicity.

Lemma 2.3. If $g : \mathbb{R} \to X$ is an S-almost periodic continuous function, and $G : \mathbb{R} \to L(X,X)$ is a weakly almost periodic operator-valued function, then $x^*G(\cdot)g(\cdot) : \mathbb{R} \to C$ is an S-almost periodic continuous function for every $x^* \in X^*$.

Proof. By our assumption, for an arbitrary but fixed $x^* \in X^*$, the function $x^*G(\cdot)x : \mathbb{R} \to C$ is almost periodic, and so is bounded on \mathbb{R}, for every $x \in X$. Hence, by the uniform-boundedness principle,

$$\sup_{t \in \mathbb{R}} \|x^*G(t)\| = K < \infty.$$ \hfill (2.4)

We note that the function $x^*G(\cdot)g(\cdot)$ is continuous on \mathbb{R} (see [6, proof of Theorem 1]).

Consider the functions g_η given by

$$g_\eta(t) = \frac{1}{\eta} \int_0^\eta g(t + s)ds \quad \text{for } \eta > 0, \ t \in \mathbb{R}.$$ \hfill (2.5)

Since g is S-almost periodic from \mathbb{R} to X, g_η is strongly almost periodic from \mathbb{R} to X for every fixed $\eta > 0$. Further, as shown for C-valued functions in [2, pages 80-81], we can prove that $g_\eta \to g$ as $\eta \to 0+$ in the S-sense, that is,

$$\sup_{t \in \mathbb{R}} \int_t^{t+1} \|g(s) - g_\eta(s)\|ds \to 0 \quad \text{as } \eta \to 0^+.$$ \hfill (2.6)

Now we have

$$x^*G(s)g(s) = x^*G(s)[g(s) - g_\eta(s)] + x^*G(s)g_\eta(s) \quad \text{for } s \in \mathbb{R},$$ \hfill (2.7)
and, by (2.4) and (2.6),

\[\sup_{t \in \mathbb{R}} \int_{t}^{t+1} \left| x^* G(s) \left[g(s) - g_\eta(s) \right] \right| ds \leq K \sup_{t \in \mathbb{R}} \int_{t}^{t+1} \| g(s) - g_\eta(s) \| ds \rightarrow 0 \text{ as } \eta \rightarrow 0^+. \tag{2.8} \]

By Lemma 2.2, the functions \(x^* G(\cdot)g_\eta(\cdot) \) are almost periodic from \(\mathbb{R} \) to \(C \). Therefore, it follows from (2.7)-(2.8) that \(x^* G(\cdot)g(\cdot) \) is \(S \)-almost periodic from \(\mathbb{R} \) to \(C \).

Lemma 2.4. If \(g : \mathbb{R} \rightarrow X \) is an \(S \)-almost periodic continuous function, and \(G : \mathbb{R} \rightarrow L(X,X) \) is a strongly almost periodic operator-valued function, then \(G(\cdot)g(\cdot) : \mathbb{R} \rightarrow X \) is an \(S \)-almost periodic continuous function.

The proof of this lemma parallels that of Lemma 2.3 and may therefore be safely omitted.

Lemma 2.5. In a reflexive space \(X \), assume \(h : \mathbb{R} \rightarrow X \) is an \(S \)-almost periodic continuous function, and \(H(t) = \int_{0}^{t} h(s)ds \) for \(t \in \mathbb{R} \). \(\tag{2.9} \)

If \(H \) is \(S \)-bounded, then it is strongly almost periodic from \(\mathbb{R} \) to \(X \).

For the proof of Lemma 2.5, see [5, Notes (ii)].

Lemma 2.6. For an operator-valued function \(G : \mathbb{R} \rightarrow L(X,X) \), suppose \(G^*(t) \) is the conjugate (adjoint) of the operator \(G(t) \) for \(t \in \mathbb{R} \). If \(G^* : \mathbb{R} \rightarrow L(X^*,X^*) \) is strongly almost periodic, and \(g : \mathbb{R} \rightarrow X \) is weakly almost periodic, then \(G(\cdot)g(\cdot) : \mathbb{R} \rightarrow X \) is weakly almost periodic.

For the proof of Lemma 2.6, see [6, Remarks (iii)].

3. **Proof of Theorem 1.1.** By (2.1), we have

\[T(-t)u^{(n-1)}(t) = u^{(n-1)}(0) + \int_{0}^{t} T(-s)f(s)ds \text{ for } t \in \mathbb{R}. \tag{3.1} \]

Evidently, \(T(-\cdot) : \mathbb{R} \rightarrow L(X,X) \) is a strongly almost periodic group. Therefore, \(T(-\cdot)x : \mathbb{R} \rightarrow X \) is strongly almost periodic, and so is bounded on \(\mathbb{R} \), for every \(x \in X \). Hence, by the uniform-boundedness principle,

\[\sup_{t \in \mathbb{R}} \| T(-t) \| < \infty. \tag{3.2} \]

Consequently, \(T(-\cdot)u^{(n-1)}(\cdot) \) is \(S \)-bounded on \(\mathbb{R} \) (by our assumption, \(u^{(n-1)} \) is \(S \)-bounded on \(\mathbb{R} \)).

Moreover, by Lemma 2.4, \(T(-\cdot)f(\cdot) : \mathbb{R} \rightarrow X \) is an \(S \)-almost periodic continuous function. So, by Lemma 2.5, \(T(-\cdot)u^{(n-1)}(\cdot) \) is strongly almost periodic from \(\mathbb{R} \) to \(X \). Hence, by Lemma 2.2, \(u^{(n-1)}(\cdot) = T(\cdot)[T(-\cdot)u^{(n-1)}(\cdot)] \) is strongly almost periodic from \(\mathbb{R} \) to \(X \).
Now consider a sequence \((\alpha_k)_{k=1,2,...}\) of infinitely differentiable nonnegative functions on \(\mathbb{R}\) such that
\[
\alpha_k(t) = 0 \quad \text{for} \quad |t| \geq \frac{1}{k}, \quad \int_{-1/k}^{1/k} \alpha_k(t) \, dt = 1. \tag{3.3}
\]

The convolution of \(u\) and \(\alpha_k\) is defined by
\[
(u^* \alpha_k)(t) = \int_{\mathbb{R}} u(t-s) \alpha_k(s) \, ds = \int_{\mathbb{R}} u(s) \alpha_k(t-s) \, ds \quad \text{for} \quad t \in \mathbb{R}. \tag{3.4}
\]

We set
\[
C_{\alpha_k} = \max_{|t| \leq 1/k} \alpha_k(t). \tag{3.5}
\]

Then we have
\[
\| (u^* \alpha_k)(t) \| = \left\| \int_{-1}^{1} u(t-s) \alpha_k(s) \, ds \right\| \leq C_{\alpha_k} \int_{-1}^{1} \| u(\rho) \| \, d\rho \leq 2C_{\alpha_k} \| u \|_S \quad \text{for} \quad t \in \mathbb{R}, \text{ by (1.3)}. \tag{3.6}
\]

That is, \(u^* \alpha_k\) is bounded on \(\mathbb{R}\).

We note that, for \(m = 1,2,...,n-1\) and \(k = 1,2,...\),
\[
(u^* \alpha_k)^{(m)}(t) = (u^{(m)}^* \alpha_k)(t) \quad \text{for} \quad t \in \mathbb{R}. \tag{3.7}
\]

Further, since \(u^{(n-1)}\) is strongly almost periodic from \(\mathbb{R}\) to \(X\), \((u^* \alpha_k)^{(n-1)} = (u^{(n-1)}^* \alpha_k)\) is strongly almost periodic from \(\mathbb{R}\) to \(X\). Consequently, by [3, corollary to Lemma 5], \(u^* \alpha_k, u'^* \alpha_k, \ldots, u^{(n-2)*} \alpha_k\) are all strongly almost periodic from \(\mathbb{R}\) to \(X\).

With \(u^{(n-1)}\) being bounded on \(\mathbb{R}\), \(u^{(n-2)}\) is uniformly continuous on \(\mathbb{R}\). Therefore, the sequence of convolutions \((u^{(n-2)*} \alpha_k)(t) - u^{(n-2)}(t)\) as \(k \to \infty\), uniformly for \(t \in \mathbb{R}\). Hence \(u^{(n-2)}\) is strongly almost periodic from \(\mathbb{R}\) to \(X\). We thus conclude successively that \(u^{(n-2)}, \ldots, u',u\) are all strongly almost periodic from \(\mathbb{R}\) to \(X\), completing the proof of the theorem.

4. Proof of Theorem 1.2. By our assumption, for an arbitrary but fixed \(x^* \in X^*, x^* T(\cdot) = T^* (\cdot) x^* : \mathbb{R} \to X^*\) is strongly almost periodic, and so \(x^* T(\cdot) x : \mathbb{R} \to C\) is almost periodic for every \(x \in X\). Therefore, it follows that \(T : \mathbb{R} \to L(X,X)\) is a weakly almost periodic group.

By (3.1), we have
\[
x^* T(-t) u^{(n-1)}(t) = x^* u^{(n-1)}(0) + \int_{0}^{t} x^* T(-s) f(s) \, ds \quad \text{for} \quad t \in \mathbb{R}. \tag{4.1}
\]

By Lemma 2.3, \(x^* T(\cdot) f(\cdot) : \mathbb{R} \to C\) is an \(S\)-almost periodic continuous function. By (2.4), \(x^* T(-t) u^{(n-1)}(\cdot)\) is \(S\)-bounded on \(\mathbb{R}\), and so, by Lemma 2.5, is almost periodic from \(\mathbb{R}\) to \(C\). That is, \(T(\cdot) u^{(n-1)}(\cdot)\) is weakly almost periodic from \(\mathbb{R}\) to \(X\). Consequently, by Lemma 2.6, \(u^{(n-2)}(\cdot) = T(\cdot)[T(\cdot) u^{(n-1)}(\cdot)]\) is weakly almost periodic from \(\mathbb{R}\) to \(X\).
For the sequence \((α_k)\) defined by (3.3), \((x^* u^* α_k) = x^* (u^* α_k)\) is bounded on \(\mathbb{R}\) (by (3.6)). Further, for \(m = 1, 2, \ldots, n - 1\) and \(k = 1, 2, \ldots\), we have
\[
(x^* u^* α_k)^{(m)}(t) = (x^* u^{(m)} u^* α_k)(t) \quad \text{for } t \in \mathbb{R}.
\] (4.2)

Now the rest of the proof is obvious.

If \(f : \mathbb{R} \to X\) is weakly almost periodic, then by Lemma 2.6, \(T(−·)f(·) : \mathbb{R} \to X\) is weakly almost periodic.

Remark 4.1. If \(T(t) \equiv I\) for \(t \in \mathbb{R}\), and so \(A = 0\), then problem (1.8) reduces to
\[
u^{(n)}(t) = f(t) \quad \text{a.e. for } t \in \mathbb{R}.
\] (4.3)

(i) In a reflexive space \(X\), suppose \(f\) is defined as in Theorem 1.1. If \(u : \mathbb{R} \to X\) is an \(S\)-bounded strong solution of problem (4.3), then \(u, u', \ldots, u^{(n-1)}\) are all strongly almost periodic from \(\mathbb{R}\) to \(X\).

(ii) Assume \(f : \mathbb{R} \to X\) is a weakly almost periodic continuous function. If \(u : \mathbb{R} \to X\) is an \(S\)-bounded strong solution of problem (4.3), then \(u, u', \ldots, u^{(n-1)}\) are all weakly almost periodic from \(\mathbb{R}\) to \(X\).

These statements are clearly special cases of Theorems 1.1 and 1.2 if we take into account that the assumption \(u^{(n-1)} S\)-bounded can be omitted, since, by (4.3), \(u^{(n)}\) is \(S\)-almost periodic, and so \(u^{(n-1)}\) is strongly (weakly) uniformly continuous on \(\mathbb{R}\) (by Amerio and Prouse [1, Theorem 8, page 79]).

References

Aribindi Satyanarayan Rao: Department of Computer Science, Vanier College, 821 Avenue Ste Croix, St. Laurent, Quebec, Canada H4L 3X9

E-mail address: aribindr@vaniercollege.qc.ca
Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>February 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Politechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk