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ON BIRATIONAL MONOMIAL TRANSFORMATIONS OF PLANE
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We study birational monomial transformations of the form @(x:y:z) = (g1 x% yﬁl z¥1
eox X2 yBZ z¥2 1 x%3 B3 2¥3) where €1,&» € {—1,1}. These transformations form a group. We
describe this group in terms of generators and relations and, for every such transformation
@, we prove a formula, which represents the transformation @ as a product of generators of
the group. To prove this formula, we use birationally equivalent polynomials Ax + By +C and
AxP +By41+ Cx"y*.If @ is the transformation which carries one polynomial onto another,
then the integral powers of generators in the product, which represents the transformation
@, can be calculated by the expansion of p/q in the continued fraction.

2000 Mathematics Subject Classification: 14E07, 14L30.

1. Introduction. Birational monomial transformations of the projective plane have
already found a lot of applications. For example, such transformations are actively used
for construction of real algebraic curves and surfaces (see, e.g., [1, 4, 5, 6, 8, 9]). We think
that formula (3.6) will be helpful for description of construction of algebraic objects.

In Section 2 we give a little exposition on projective polynomials in three variables.
In Section 3 we describe the birational monomial group in terms of its generators and
relations and give the statement of a theorem of decomposition of birational monomial
transformations. In Section 4 we give the proof of the theorem.

2. Preliminaries. A nonzero homogeneous polynomial of degree n in three variables,
X, ¥, z, is the expression

f,y,z2)= D> fox“y92z9%, w=(w),w2,w3). (2.1)

wlt+wr+w3z=n

The convex hull of the set {(w1,w>2) € R? | f,, = 0} is called the Newton polygon of the
polynomial f(x,y,z) and is denoted as N(f). The plane with coordinates (w1, w>) is
called the plane of Newton'’s polygons.

Every polynomial f(x,y,1) can be represented in the form f(x,y,1) = xiyJ f(x, y,
1), where i and j are nonnegative integers, and the polynomial f"(x,y,1) has no factors
x and y.If @ is a transformation, then clearly (f"o @) = (f o )" Itis also clear that the
Newton polygon N(f") can be obtained from the Newton polygon N (f) by translation
in the plane of Newton’s polygons by the vector (—1i,—j).

3. The birational monomial group. Let (x : v : z) be homogeneous point coordi-
nates in the projective plane KP? over a field K and let (x,7) be affine coordinates in
the affine chart K> = KP?\ {z = 0}. A projective transformation @ is defined by the
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formula p(x:y:z)=(pi(x,y,2): @2(x,¥,2) : 3(x,V,z)), where @1, >, 3 are ho-
mogeneous polynomials of the same degree, assumed to have no common factors. For
the transformation @ (x : y : z), we define its natural restriction @ (x,y) to the affine
chart K? = KP?\ {z = 0} by the formula @ (x,y) = (@1(x,v,1)/p3(x,y,1),p2(x, y,
D/@s(x,y,1).

Let id : KP? — KP? be the identity map. If @ is a birational transformation, then we
denote as usual

PP=id, @o--ro@p=@", @lo...opl=@p™ (3.1)
—_— _
n times n times

Let 11,72,73 : KP? — KP? be maps defined by formulas 1 (x:y:z) = ((-x) : ¥ : 2),
(x:y:z)=(x:(-y):z),and r3(x : y:z) = (x : ¥ : (-z)). The set of maps R =
{id,71,72,71 o 2} with the operation of composition of the maps, with generators 7
and 7», and with relations

ri =r; =1d, Y10¥p =107, 3.2)

is a group isomorphic to Z, X Z,. Note that 3 = 71 o 7».

Let 1,580,583 : KP2 — KP2 be maps defined by formulas s;(x : v :z) = (x : z: ),
So(x:y:z)=(z:y:x),and s3(x:y:z)=(y:x:z). The set of maps S = {id, s} o 52,
S20581,51,52,51 052 051} with the operation of composition of the maps, with generators
s1 and s, and with relations

§% =55 =id, §108208] = Sy 05805, (3.3)

is a group isomorphic to the symmetric group S3. Note that s3 = §; 052 05.

Let hy be the birational transformation defined by the formula hy(x : y : z) =
(x?:yz:xz), whose inverse transformationis hy ' (x:y:z) = (xz:xy :z?). Due to
Newton, the transformation hv is called a hyperbolism. The set H = {...,hy =2, hy~1,id,
hy,hy?,...} of integral powers of hy is a free group isomorphic to Z.

Let G = R xS * H be the free product of groups R, S, and H. This means that the set
of generators of G is the union of the generators of R, S, and H, and the set of relations
of G is the union of the relations of R, S, and H.

DEFINITION 3.1. The factor group G/% with generators 1, ¥2, s1, S2, hy, where R
is the system of relations

¥io$1 =S107,

Y2081 =S$1072077,

Y1082 =820V 072,

g2 TR (3.4)
rehy =hyeriers,

r2ohy =hyor,,

Siochy =hyosjosyohyosy,

(hyes2ohy =52,
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is called the group of birational monomial transformations of KP? and denoted by
T(KP?).

The group of birational monomial transformations T (KP?) is a subgroup of the Cre-
mona group Cr(KP?) (see [2, 3]).

Below in this paper, the word “transformation” without an adjective always means a
“birational monomial transformation.”

Every transformation @ € T (KP?) can be represented as a composition @ o - - - o @y,
where each of @i,...,@; is a positive integral power of one of the generators of the
group T (KP?), because 77! =7, 15 =72, syl =51, 531 =52, and hy ™ = s,0hy™ o s,
Every transformation ¢ can be represented in the form

Qx:y:z)= (g x0yPrzngyx2ybozye xo3 4B 7y3), (3.5)

where &,&» € {-1,1}; «;, Bi, and y; are nonnegative integers; and the monomials
x®1 Py x %2 qB2 z¥2 53983 2¥3 have no common factors. We stress this convention,
for example, (hy ohy)(x:y:z) = (x*:xyz%2:x32) = (x3: yz%? : x?z), and accept
only the last form. It means that one or two of «;, &z, &3, one or two of 1, 82, B3, one
or two of yy, y», y3 are equal to 0, and o¢; + 1 +y1 = &2 + B2 + y2 = &3 + B3 + y3. The
integer «; + 1 +y; is a degree of the transformation g. For example, the degree of the
transformations 1, 72, $1, S» equals 1, and the degree of hy™ equals |n|+ 1, where n € 7.

Denote the element s30hy os3 € T(KP?) as hx. Its inverse is hx™! = sposi0hyo
s10 s». In homogeneous coordinates it is defined by formulae hx(x:v:z) = (xz: y?:
yz)and hx Nx:y:z) = (xy:yz:z%).

In the following theorem and below, the phrase “a polynomial f(x,y,1) subjected to
the transformation @ is carried onto the polynomial I(x,y,1)” means that L(x,y,1) =
[(fep )(x,,2)|z=1]"

THEOREM 3.2. Let p and q be mutually prime natural integers, 0 < q < p. Let v
and s be integers which satisfy the following conditions: (1) 0 < v < p, 0 < s < q,
@)r/p+s/qg<1l,and (3)r = —q?P~(modp) and s = —p®@-1(modq), where ¢(m)
is the Euler function. Then every polynomial f(x,y,1) = Ax? + By1+ Cx"y*S, where at
least two of A, B, C are not zero, subjected to the transformation

@ = (hx(l’(’”k“)/z ohy(lf(fl)k)/z)“k o+ ohx® oy ohx o hy™ (3.6)

is carried onto the polynomial l(x,y,1) = Ax + By + C, where the integers a,,a»,...,ax
are provided by expansion of p/q in the continued fraction with adjusted last denomi-
nator

B :a1+ , (37)
a

in other words, L = (fo@ 1),
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COROLLARY 3.3. (1) If the polynomial f(x,7y,1) subjected to a transformation y is
carried onto the polynomial 1 Ax + 2By + &3C, where &1,&2,63 € {1,—1}, then ¢ =
1,1(1/2)(1751) C)1,2(1/2>(lfsz) o (1 01,2)<1/2)(1—53) o .

(2) If the polynomial f(x,y,1) subjected to a transformation  is carried onto the
polynomial A+Bx +Cy, Ay +B+Cx, Ax+B+Cy, A+By +Cx, or Ay + Bx + C, then
Y=S1080Q, P =S50S 0@, P=S10@Q, P =S0@Q, 0r | =5]0Sp05] 0@, respectively.

(3) If condition (2) of Theorem 3.2 is changed to condition 2'), v/p +s/q > 1, and
other conditions and notations are kept, and if the polynomial f (x,y,1) subjected to a
transformation  is carried onto the polynomial Ax + By + C, then ¢ = @ otr = tro,
where tr = s o hy 1 o5 05051 0 hy is well-known standard (triangular) quadratic
transformationtr(x:y:z) = (yz:xz:xy).

REMARK 3.4. There is only one more possible case: when p = g = 1, which does not
satisfy the theorem. In this case either » = s = 0, and the polynomial Ax + By + C is
carried onto itself by the identity transformation: ¢ =id, or » = s = 1, and the polyno-
mial Ax +By + Cxy is carried onto the polynomial Ax + By + C by the transformation
@ =Ss30tr=s30510hy losjos0s0hy.

4. Proof of the theorem. A birational monomial transformation ¢ maps a polyno-
mial f onto a polynomial (f o y~!). We find the connection between N(f o y~!) and
N(f).

Every transformation ¢! written in the form (3.5) induces a generic linear map-
ping A(y) : R? — R? of the plane of Newton’s polygons, which can be defined on any
monomial. Namely, if g is a monomial, say g(x,y,z) = x®1y®2z®3 then

(g ° (,Ufl) (x,y7,2) = X0<1wl+0<2w2+0<3w3y51w1+52w2+53w32>’1w1+)’2w2+J’3w3, 4.1)

thus, the linear mapping A(y) is defined by the matrix

A K2 O3
Ap=|B1 B2 B3|. 4.2)
Yr Y2 ¥3

And thus, N(foy™) = Ay (N(f)) for every polynomial f.
Remark that the generators of the birational monomial group have matrices

1 0 0
A=A, =A,=|0 1 0],
00 1
(4.3)
1 0 0 00 1 2 0 1
A =10 0 1|, A,=]0 1 0|, Aun=|0 1 0
01 0 100 01 1

The set of matrices A(T(KP?)) = {Ap | @ € T(KP?)} is a subset in the linear group
GL(3,R) of 3 x 3-matrices. The operation ¢ defined by the formula Ay, ¢ Ay = Agoy
converts the set A(T(KP?)) into a group, which is natural (p — Agp) homomorphic
image of T (KP?).
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Itis clear that every birational monomial transformation ¢ induces one-to-one corre-
spondence between monomials of the polynomials f and (f o @~!)" Thus, to represent
a transformation @ as a composition of generators of birational monomial group, it is
enough to study the action of the transformation ¢ on a polynomial f whose Newton’s
polygon N (f) is a triangle with the area 1/2.

We consider a polynomial f(x,y,1) = Ax? + By% + Cx"y*, with ABC # 0, where
p and g are mutually prime integers, 0 < g < p, and v and s are integers, which
satisfy the following conditions: (1) 0 <7 < p, 0 <s < q, ) v/p +5s/q < 1, and
(3)r = —q®P-1(modyp) and s = —p®@-1(modq), where ¢ (m) is the Euler function.
The Newton polygon N (f) is the triangle with integer vertices (p,0), (0,9), (r,s) which
has no other integer points belonging to its interior and boundary but its three vertices.
According to the Pick theorem [7], the area of such a triangle equals 1/2. The genus of
any curve f(x,y,1) = Ax? + By4+ Cx"y’ = 0 with such properties is zero and thus,
all such curves are birationally equivalent.

Note that hy 4 (x:y:1) = (x:x% :1)and hx % (x:y:1) = (xy%:y:1). We
evaluate (fo@~1)(x,y,1) as follows.

The first step.

(fohy M) (x,y,1) = f(x,xy,1) = x19(Ax?1 + By 4+ Cxct@rd-a1dd)

(4.4)
= x"1yV1 (AxP1 + By + Cx1 ydr),

where u; =a1q, v, =0,c; =c+a1d—aq,and d; =d.
The second step.

(fohy M ohx %) (x,y,1) = (fohy ™) (xy",¥y,1)
— xulyu21¢1+v1+a2b1 (AXbl +B_’)/h2 + CXClyllzclerrﬂzhl)

= x"2yv2 (AxP1 + ByP2 + Cx2y®2),

(4.5)
where Uy = U1, Vo = aru +vy +a>by, co =cy,and dr = arcy +d; —a»b;.
The third step.
(fehy M ohx™ohy™®)(x,¥,1) = (fohy ™ ohx™%)(x,xBy,1)
b b 4 (4.6)
=x" Y3 (Ax"3 + By + Cx3 ™),
where U3 = Uy +a»vy +aszby, v3 = vy, c3 = c» +asdr —asby, and dsz = d».
The fourth step.
(fohy Mohx R ohy Bohx %)(x,y,1)
= (fohy M ohx ®ohy ®)(xy%,y,1)
4.7)

— Xulyazulﬂzl +u2h1 (Axbl +Byh2 + Cxclyachrdlfagbl)

= x"2 V2 (AxP1 + Byb? + Cx2 %),

where Uy = Uy, Vo = axu; + v1 +axby, ¢» = ¢, and d» = axc1 +d1 —axb;. We then
proceed until the (k—1)th step.
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The (k—1)th step. We have two cases.
The first case: k is even.

(fohy M ohx %o -ohx %20hy %1)(x,y,1)
= (fohy @ ohx 0. ohx™%2)(x,x%1y,1) (4.8)
= x"k-1 YVk-1 (Ax + ByPk-2 4 CxCk-19%k-1)
where ug 1 = ug2 + ag-1Vk-2 + ax-1bx-2, Vi1 = Vg2, Ck-1 = Ck2 + Ag1dig-2 —

ax-1by o, and dy_1 = di 2.
The second case: k is odd.

(fc hy*ul o hX*ﬂz O«+=0 hyfak72 o hx’ak—l ) (X,y, 1)
= (fohy Mohx ®o...ohy %2)(xy%-1,y,1) (4.9)
= x"k-1Vk-1 (AxPk-2 4 By + CxCk-1y%k-1)
where uyg_1 =uUg_2, Vx-1 = Ak 1Uk-2+Vk-2+aAk-1br_2,Cx-1 = Cx2,and dg—1 = ag-1Cx—2+
dk-» —ag-1bi_».

The kth step. We have two cases.
The first case: k is even.

(fo hy*al o h'x*aZ 0-+=0 h’y’akfl ohx’ak)(x,y, ]_)
= (fohy M ohx ®o...ohy 1) (xy%,y,1) (4.10)
= x"kyVk (Ax + By + Cx k),

where Uk = Uk-1, Vk = AkUKk-1 + Vk-1 + Ak, Ck = Ck—1, and dk = ayCk-1 +dk_1 —ak.
The second case: k is odd.

(fohy M ohx %o . ohx 1lohy %) (x,y,1)
= (fohy M ohx ®o...ohx %2)(x,x%y,1) (4.11)
= x"yVk (Ax + By + Cx k),
where Uy = Ug_1 + AxVi—_1 + Ak, Vx = Vk-1, Ck = Cx—1 + axdx—_1 —ax, and dy = dy_1.
This calculation shows that the integers a,,a»,as,...,ay satisfy the Euclidean algo-
rithm with adjusted last row
p=aiq+b,
q = azxby + Db,
b] = agbz + b3,
(4.12)
by 4 = ax2by_3+by 2,
by 3 =ar by 2+1,

b o=ar+1,

which provides the desired continued fraction.
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