INTEGRATED COSINE FUNCTIONS

QUAN ZHENG

Dept. of Math., Huazhong Univ. of Science and Technology, Wuhan 430074, P.R.China

(Received June 18, 1993 and in revised form June 20, 1994)

ABSTRACT. In order to the second order Cauchy problem (CP2): \( x''(t) = Ax(t), x(0) = x \in D(A^n), x''(0) = y \in D(A^m) \) on a Banach space, Arendt and Kellermann recently introduced the integrated cosine function. This paper is concerned with its basic theory, which contain some properties, perturbation and approximation theorems, the relationship to analytic integrated semigroups, interpolation and extrapolation theorems.

KEY WORDS AND PHRASES. Integrated cosine function, analytic integrated semigroup, perturbation, approximation, interpolation, extrapolation.

1991 AMS SUBJECT CLASSIFICATION CODE. 47D09.

1. BASIC PROPERTIES

Let \( A \) be a linear operator on a Banach space \( X \). If there exist \( n \in \mathbb{N}_0 \equiv \mathbb{N} \cup \{0\}, M, \omega > 0 \) and a strongly continuous family \( C(t) \) in \( L(X) \) with \( \|C(t)\| \leq Me^{\omega t} \) for \( t \geq 0 \) such that \( \omega^2 \in \rho(A) \) and \( R(\lambda^2, A) = \lambda^{n-1} \int_0^\infty e^{-\lambda t} C(t)dt \) for \( \lambda > \omega \), then we say that \( A \) generates the (exponentially bounded) \( n \)-times integrated cosine function \( C(t) \) (see [1]), and write \( (a, C(t)) \) (or \( A \), or \( C(t) \) \( ) \in G_n(M, \omega, X). \) Set \( G_n(\omega, X) = \cup_{M > 0}G_n(M, \omega, X) \) and \( G_n(X) = \cup_{M > 0}G_n(M, \omega, X) \). The definition of integrated semigroups see e.g. [6], and the corresponding notations \( G_n(M, \omega, X), G_n(\omega, X) \) and \( G_n(X) \) also can be introduced.

It is known that a 0-times integrated cosine function consists with a cosine function, while the following relationship can be shown by the same method in [4, Th.3.5].

PROPOSITION 1.1. \( (a, C(t)) \in G_n(X) \) iff \( (A, C(t)) \in G_{n+1}(X^2) \), where \( A = \begin{pmatrix} 0 & I \\ A & 0 \end{pmatrix} \) and

\[
C(t) = \left( \begin{array}{c} \int_0^t C(s)ds \\ \int_0^t (t-s)C(s)ds \end{array} \right) \quad \text{for} \quad t \geq 0.
\]

The basic properties of integrated cosine functions now can be deduced from Prop.1.1, the properties of Laplace transforms and integrated semigroups (cf. [6]). We omit the details.

PROPOSITION 1.2. Let \( (A, C(t)) \in G_n(M, \omega, X), \langle k \rangle = \left\{ \frac{k+1}{2} \right\}, \) and \( t, s \in \mathbb{R}^+ \equiv [0, \infty). \) Then

(a) \( C(t)C(s) = C(s)C(t), C(t)x = 0 \) \( (r \geq 0) \) implies \( x = 0 \), and \( C(t) \) is uniquely determined by \( A \).
(b) \( (A, \int_0^t (t-s)^kC(s)ds/\kappa!) \in G_{n+k+1}(M\omega^{-k-1}, \omega, X) \) for \( k \in \mathbb{N}_0 \).
(c) \( R(\lambda^2, A) = \lambda^{n-1} \int_0^\infty e^{-\lambda t} C(t)dt \) and \( \|R(\lambda^2, A)\| \leq M|\lambda|^{n-1}(\text{Re}\lambda - \omega)^{-1} \) for \( \text{Re}\lambda > \omega \).
(d) For \( x \in D(A^k), C(\cdot)x \in C^k(R^+, X) \) \( (k \in \mathbb{N}_0) \) and \( \lambda^{-n+k}R(\lambda^2, A)x \rightarrow C^k(0) = \delta_{kn}x \) as \( \lambda \rightarrow \infty \) \( (0 \leq k \leq n) \), where \( \delta \) denotes the Kronecker delta.
(e) \( C(t)x \in D(A), \int_0^t (t-s)C(s)ds \in D(A) \) and \( A \int_0^t (t-s)C(s)ds = C(t)x - t^n x/n! \) for \( x \in X; AC(t)x = C(t)Ax \) and \( C(t)x = \int_0^t (t-s)C(s)ds \) \( + t^n x/n! \) for \( x \in D(A). \)
(f) \( \int_0^t C(s)ds \in D(A) \) and \( A \int_0^t C(s)ds = C'(t)x - t^{n-1}x/(n-1)! \) for \( x \in X_1; C(t)x \in D(A) \) and \( AC(t)x = C''(t)x - t^{n-2}x/(n-2)! \) for \( x \in X_2, \) where \( X_i = \{ x \in X; \ C(\cdot)x \in C^n(R^+, X) \}. \)
We conclude this section with some remarks on CP. \( x(t) \) is called a solution of CP if \( x(t) \in C^2(\mathbb{R}^+, X) \cap C(\mathbb{R}^+, D(A)) \) satisfying CP. CP is called \( n \)-wellposed if CP has a unique solution \( x(t) \) for every \((x, y) \in D(A^{(n+2)}) \times D(A^{(n+1)})\) satisfying \( \|x(t)\| = p(t)(\|x\|_m + \|y\|_{m-1}) \) for some locally bounded function \( p(t) \). CP is called exponentially \( n \)-wellposed if, in addition, \( p(t) = M e^{\omega t} \).

The following result follows from Prop.1.1, [3, Th.2.5] and [6, §7]. The details are omitted.

THEOREM 1.3. Let \( \omega > 0, n, m \in \mathbb{N}_0 \) and \( \rho(A) \neq \emptyset \). Then the following statements hold.

(a) If CP has a unique solution for every \((x, y) \in D(A^{(n+2)}) \times D(A^{(m+1)})\) then CP is \( n \)-wellposed where \( k = \max(m, n) \). In particular, CP has a unique solution for every \((x, y) \in D(A^{(n+2)}) \times D(A^{(m+1)})\) iff CP is \( n \)-wellposed.

(b) \( A \in G_n(\omega, X) \) iff CP has a unique solution \( x(t) \) with \( \|x''(t)\| = O(e^{\omega t}) \) for every \((x, y) \in D(A^{(n+2)}) \times D(A^{(m+1)})\). If, in addition, \( D(A) = X \) then \( A \in G_n(\omega, X) \) iff CP is exponentially \( n \)-wellposed.

2. PERTURBATIONS

We first consider the perturbation problem of \( 2m \)-times integrated cosine functions. The following is a generalization of the Takenaka-Okazawa theorem (cf. [10, II]).

THEOREM 2.1. Let \( (A, C(t)) \in G_{2m}(X) \) and \( B \) be a linear operator on \( X \) satisfying

\[ (b_1) \quad D(A) \subset D(B), \quad R(B) \subset D(A_{(m+1)}^+) \quad \text{and} \quad B R(\lambda, A) \in L(X) \quad \text{for some} \quad \lambda_0 \in \rho(A), \quad \text{where} \quad R(B) \]

\[ (b_2) \quad \lambda = \lim_{\lambda \to \infty} l_\lambda \leq \infty, \quad \text{where} \quad l_\lambda = \sup \{\int_0^\infty e^{-\lambda t} \|BC^{(2m-1)}(t)x\|_m dt; \quad x \in D(A^{(m+1)}), \quad \|x\|_m \leq 1\} \quad \text{and} \quad \|x\|_m = \|x\|^{A_{(m+1)}} = \sum_{k=0}^m \|A^k x\|_m \quad \text{for} \quad x \in D(A^{(m+1)}). \]

Then \( A + qB \in G_{2m}(D(A)) \) for every \( q \) with \( |q| < 1/l_\infty \).

PROOF. Let \( A = \begin{pmatrix} 0 & I \\ A & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ B & 0 \end{pmatrix} \quad \text{and} \quad C(t) \quad \text{be given by (1) with} \quad n = 2m. \quad \text{Then}

\[ R(\lambda, A) = \begin{pmatrix} \lambda & I \\ A & \lambda \end{pmatrix} \quad \text{for} \quad \lambda^2 \in \rho(A), \quad \text{(2)} \]

and therefore \( (b_1) \) implies \( (b'_1) \): \( D(A) \subset D(B), \quad R(B) \subset D(A_{(m+1)}^+) \quad \text{and} \quad B R(\lambda_{(m+1)}^+, A) \in L(X^2) \).

Since \( \|(x, y)\|_m = \|x\|^{A_{(m+1)}} + \|y\|^{A_{(m+1)}} \) is equivalent to \( \|(x, y)\|^{A_{(m+1)}} \) on \( D(A^{(m+1)}) \) we have that

\[ l_\lambda^{(m+1)} = \sup \{\int_0^\infty e^{-\lambda t} \|BC^{(2m)}(t)(x, y)\|_m dt; \quad (x, y) \in D(A^{(2m+2)}), \quad \|(x, y)\|_m \leq 1\} \leq \max\{l_\lambda^{(m+1)}, l_\lambda^{(m)}\}, \]

where \( l_\lambda^{(m+1)} = \sup \{\int_0^\infty e^{-\lambda t} \|BC^{(2m)}(t)x\|_m dt; \quad x \in D(A^{(m+1)}), \quad \|x\|_{m+1} \leq 1\} \). Noting that \( l_\lambda \leq l_\lambda^{(m+1)} \quad \text{and} \quad l_\lambda^{(m+1)} \rightarrow 0 \quad \text{as} \quad \lambda \rightarrow \infty \), one has that \( \lim_{\lambda \to \infty} l_\lambda^{(m+1)} = l_\infty \). Combining \( (b'_2), \text{Prop.1.1}, \text{[10, II, Th.4.2]} \) with this yields that \( A + qB \in G_{2m+1}(D(A)) \) for \( |q| < 1/l_\infty \). Let \( C(t) \) generated by \( A_{(m+1)} + qB \) have the form

\[ C_1(t) = \begin{pmatrix} A_{(m+1)} & qB \end{pmatrix} \quad \text{for} \quad x \in D(A). \]

Consequently \( C_1(t) \in L(D(A)) \), and so the claim follows.

The subsequent theorem can be shown by [10, II, Th.4.3] and the same method as above.

THEOREM 2.2. Let \( (A, C(t)) \in G_{2m}(X) \) and \( B \) be a closed linear operator on \( X \) satisfying

\[ (b_3) \quad D(A) \cup \int_0^\infty C(s)(X)ds \subset D(B) \quad \text{for} \quad t \geq 0 \quad \text{and} \quad R(B) \subset D(A^m). \]

\[ (b_4) \quad B \int_0^\infty C(s)ds \in C(R^+, D[A^{(m+1)}]) \quad \text{for} \quad x \in X \quad \text{where} \quad \{D[A^{(m+1)}]\} = (D(A^m), \|\cdot\|_m), \quad \text{and} \quad l_\infty = \lim_{\lambda \to \infty} l_\lambda < \infty \quad \text{where} \quad l_\lambda = \sup \{\int_0^\infty e^{-\lambda t} \|BC^{(2m-1)}(t)x\|_m dt; \quad x \in D(A^m), \quad \|x\|_m \leq 1\}. \]

Then \( A + qB \in G_{2m}(X) \) for every \( q \) with \( |q| < 1/l_\infty \).

In the case \( m = 0 \), since \( l_\infty = 0 \) (see [9, Lemma]) and \( (b_2) \) can be replaced by \( \int_0^\infty C(s)(X)ds \in D(B) \) for \( t \geq 0 \), Theorem 3.2 (with \( m = 0 \)) is consistent with [9, Prop.].

We now turn to the perturbation problem of \((2m+1)\)-times integrated cosine functions.
THEOREM 2.3. Let \((A, C(t)) \in G_{2m+1}(X)\) and \(B\) be a linear operator on \(X\) satisfying \((b_1)\) and \(\|BC'(t)x\| \leq M e^{\omega t}\|x\|\) for \(x \in D(A)\) and \(t \geq 0\). Then \(A + B \in G_{2m+1}(\overline{D}(A))\).

PROOF. We first note that \(p(A) \subset p(A_1)\) and \(R(\lambda, A_1) = R(\lambda, A)\) on \(D(A)\) for \(\lambda \in p(A)\). Next, set \(C_1(t) = (\lambda_0 - A)^mBC'(2m)(t)R(\lambda_0, A)^m\) and \(C_2(t) = (\lambda_0 - A_1)^mBC(t)\), \(\lambda_0 \in p(A)\). Then, by our assumptions and Prop. 1.2(d), \(C_1(t)\) can be extended to strongly continuous families in \(L(\overline{D}(A))\), and satisfy \(B_1R(\lambda^2, A_1) = \int_0^\infty e^{-\lambda t}C_1(t)dt\) for large \(\lambda\), where \(B_1 = (\lambda_0 - A)^mBR(\lambda_0, A_1)^m\) and \(B_2 = (\lambda_0 - A_1)^mB\). It follows thus that

\[
C_3(t) = C(t) + \{C'(2m)R(\lambda_0, A)^m\} \ast \{I + C_1(t) + \sum_{k=2}^\infty C_1(t)^k\} \ast C_2(t) \quad \text{for } t \geq 0
\]

is also a strongly continuous family in \(L(\overline{D}(A))\), where \(\ast\) denotes the convolution. Now, one can directly check that \(R(\lambda^2, A + B) = \int_0^\infty e^{-\lambda t}C_3(t)dt\) for large \(\lambda\).

By a modification of the proof of Theorem 3.3 we can show the following

THEOREM 2.4. Let \((A, C(t)) \in G_{2m+1}(X)\) and \(B\) be a closed linear operator on \(X\) satisfying \((b_1)\) \(D(A) \cup C(t)(X) \subset D(B)\) for \(t \geq 0\) and \(R(B) \subset D(A^m)\).

Then \(A + B \in G_{2m+1}(\overline{D}(A))\).

3. APPROXIMATIONS

The first approximation theorem is a direct consequence of [10, I, Th.3].

THEOREM 3.1. Let \((A_k, C_k(t)) \in G_n(M, \omega, X)\) \((k \in \mathbb{N})\). If \(\lim_{k \to \infty} R(\lambda_0, A_k)x = R(\lambda_0, A_0)x\) for \(x \in X\) and some \(\Re \lambda_0 > \omega\), then for \(x \in D(A_0), y \in X\) and \(T > 0\)

\[
\lim_{k \to \infty} \sup_{0 \leq t \leq T} \{\|C_k(t)x - C_0(t)x\| + \|\int_0^t C_k(s)y - C_0(s)y|ds\|\} = 0. \tag{3}
\]

Conversely, if \(\overline{D(A_0)} = X\) and \(\lim_{k \to \infty} C_k(t)x = C_0(t)x\) for \(x \in X\) and \(t \geq 0\) then \(\lim_{k \to \infty} R(\lambda^2, A_k)x = R(\lambda^2, A_0)x\) for \(x \in X\), uniformly for \(\lambda\) in compact subsets of \(\Re \lambda > \omega\).

THEOREM 3.2. Let \((A_k, C_k(t)) \in G_n(M, \omega, X)\) \((k \in \mathbb{N})\), and \(\lim_{k \to \infty} R(\lambda_0, A_k)x = R_0x\) \((x \in X)\) for some \(\Re \lambda_0 > \omega\) and some injective operator \(R_0\). Then there exists \((A, C(t)) \in G_{n+1}(\omega, X)\) such that \((A, C'(t)) \in G_n(M, \omega, \overline{D(A)}), R_0 = R(\lambda_0, A)\) and \((3)\) \((A_0\) and \(C(t)\) replaced by \(A\) and \(C'(t),\) respectively) holds. If, in addition, \(R_0\) has dense range then \((A, C'(t)) \in G_n(M, \omega, X)\).

PROOF. For every \((A_k, C_k(t)) \in G_n(M, \omega, X)\) we define \((A_k, C_k(t)) \in \overline{G_n}(\omega, X^2)\) as in Prop.1.1. Thus \((2)\) and our assumption implies that

\[
\lim_{k \to \infty} R(\lambda, A_k)(x, y)^\tau = \left(\begin{array}{c} \lambda_0 R_0 \\ -I + \lambda_0 R_0 \lambda_0 R_0 \end{array}\right)(x, y)^\tau \equiv R_0(x, y)^\tau \quad \text{for } x, y \in X.
\]

It follows from \([10, I, Th.4]\) that there exists \((A, C(t)) \in \overline{G_{n+2}}(\omega, X^2)\) such that \(R_0 = R(\lambda_0, A)\) and

\[
\lim_{k \to \infty} \sup_{0 \leq t \leq T} \|\int_0^t C_k(s)(x, y)^\tau ds - C(t)(x, y)^\tau\| = 0 \quad \text{for } x, y \in X, \quad T > 0. \tag{4}
\]

It is easy to show, by \(R_0 = R(\lambda_0, A),\) that \(A = \left(\begin{array}{cc} 0 & I \\ A & 0 \end{array}\right)\) and \(R_0 = R(\lambda_0, A),\) while the remainder conclusions now can be deduced from Prop.1.1 and \((4)\).

4. RELATIONSHIP TO INTEGRATED SEMIGROUPS

Let \(A\) be a linear operator on \(X\). If there exist \(n \in \mathbb{N}_0, \omega > 0\) and a strongly continuous family \(T(t) \in L(X)\) \((t > 0)\) such that \((\omega, \infty) \subset p(A), \int_0^\infty e^{-\lambda t}\|T(t)\|dt < \infty\) and \(R(\lambda, A) = \lambda^n \int_0^\infty e^{-\lambda t}T(t)dt\) for \(\lambda > \omega\), then we say that \(A\) generates the \(n\)-times semigroup \(T(t),\) and write
(A, T(t)) ∈ ℋν(X). Obviously, \((A, S(t)) ∈ ℋν(X)\) implies \((A, S(t)) ∈ ℋν(X)\), and \((A, T(t)) ∈ ℋν(X)\) implies \(\int_0^\infty T(s)ds ∈ ℋν(X)\) (see [2, Prop. 1.1]).

**Lemma 4.1.** Let \((A, C(t)) \in G_n(X)\) and \(\Sigma_\theta = \{t; |\arg(t) < \theta\} \setminus \{0\}\) \((0 < \theta < \pi/2)\). Define

\[
T_k(t) = \begin{cases}
(-1)^k(\pi t)^{-1/2} \int_0^\infty [D^*_s \exp(-s^2/4t)]C(s)ds & \text{for } k \in \mathbb{N}_0 \\
(\pi t)^{-1/2} \int_0^\infty \exp(-s^2/4t)[f^*_t C(r)dr]ds & \text{for } k = -1,
\end{cases}
\]

where \(D_s = \partial/\partial s\). Then \(T_k(t)\) is analytic and \(T_k(t) = T_{k+2}(t)\) for \(R \geq 0\) and \(k \in \mathbb{N}_0 \cup \{-1\}\). If in addition \(\|C(t)\| ≤ M t^{d+1} e^{-\omega t} (t \geq 0)\) for some \(d \geq 0\), then for \(k \in \mathbb{N}_0\) and \(0 < \theta < \pi/2\)

\[
\begin{align*}
(a) \quad \|T_k(t)\| & ≤ M |t|^{-1/2} \int_0^\infty \sum_{n=0}^{(k-1)} s^{k-2n} |t|^{-k} \exp(-s^2 \Re t/4 |t|^2) s^n e^{-\omega t} ds \\
& ≤ M \sum_{n=0}^{(k-1)} |t|^{d+1/2} \Re t^{-k+1/2} \int_0^\infty s^{k-2n} \exp(-s^2 \Re t/4 |t|^2) ds \\
& ≤ M \sum_{n=0}^{(k-1)} |t|^{d+1/2} \Re t^{-k+1/2} (1 + |t|^2 \Re t)^{k+1/2} \int_0^\infty s^{k-2n} \exp(\omega^2 \Re t/4 |t|^2) ds.
\end{align*}
\]

for \(R > 0\) and \(k \in \mathbb{N}_0\), where \(M\) denotes a generic constant. Thus (a) is proved. (b) follows from (a) and \(R \geq |t| \cos \theta (t \in \Sigma_\theta)\). Since \(\|C(t)\| ≤ M t^{d+1} e^{-\omega t}\), (c) and (d) follow from (a) and (b) (replacing \((k, d)\) with \((0, d+1)\)) respectively. Finally, \(\int_0^\infty e^{-\lambda t} \|T_k(t)\| dt < \infty\) follows from (b) and (d), while \(\int_0^\infty \|T_k(t)\| dt < \infty\) follows from (b) and (d), by \(T_k(t) = T_{k+2}(t)\) and Fubini’s theorem we can check (6).

**Corollary 4.2.** Let \((A, C(t)) \in G_n(X)\) and \(\|C(t)\| ≤ M t^{d+1} e^{-\omega t} (t \geq 0)\) for some \(0 < \omega < \pi/2\).

If \(k = n - 2m\) and \(m\) is the least integer \(> (n- d- 2)/2\), then \((A, T_k(t)) \in ℋ_{n-k}(X)\).

In the sequel, we infer to, e.g., [10, III] for analytic integrated semigroups, and write \((A, S(t)) \in H_n(\theta, \omega, X)\) for \(A\) generating the analytic \(n\)-times integrated semigroup \(S(t)\) of type \((\theta, \omega)\).

**Theorem 4.3.** Let the conditions of Corollary 5.3 be satisfied. Then for every \(\theta \in (0, \pi/2)\)

\[(a) \quad \text{If } k < d \text{ then } (A, S_k(t)) \in H_{n-k}(\theta, \omega^2/\cos^2 \theta, X), \quad \text{where } \Sigma_\theta = \{t; |\arg(t) < \theta\} \setminus \{0\}, \text{and } S_k(t) = T_k(t) \text{ for } t \in \Sigma_\theta \text{ and } S_k(0) = 0.
\]

(b) In the case \(k = d\), if in addition \((i)\) \(\overline{D}(A) = X\), or \((ii)\) \(\lim_{t \to 0} C(t)x/t^k (x \in D)\) exist where \(\overline{D} = X\), then \((A, S_k(t)) \in H_{n-k}(\theta, \omega^2/\cos^2 \theta, X), \quad \text{where } S_k(t) = T_k(t) \text{ for } t \in \Sigma_\theta \text{ and } S_k(0) = 0 = \delta_n I.\)

**Proof.** (a) follows from Lemma 4.1. To prove (b), we note, by Prop. 1.2, that (i) implies (ii) with \(D = D(A^{(k)})\), and that (ii) and \(\|C(t)\| ≤ M t^{d+1} e^{-\omega t}\) imply \(\lim_{t \to 0} C(t)x/t^k = \delta_n x/\gamma n!\) for \(x \in X\).

The following proof is divided into cases.

Case 1. Fix \(x \in X\). Then for arbitrary \(\epsilon > 0\), there exists \(\delta > 0\) such that \(\|C(s)x/s^k\| < \epsilon\) \((0 < s < \delta)\). Thus we have (cf. the proof of Lemma 4.1(a))

\[
\|T_k(t)x\| ≤ \frac{M |t|^{-1/2}}{\sqrt{\Re t}} \left[ \sum_{i=0}^{(k-1)} s^{i-k} e^{-s^2/4t} \right] e^{\omega^2/\sqrt{\Re t} |t|^2} ds
\]

where \(\gamma(t) = \sqrt{\Re t}/|t| - \omega|t|/\sqrt{\Re t} \to \infty\) as \(\Sigma_\theta \ni t \to 0\). Thus \(T_k(t)x = 0\) as \(\Sigma_\theta \ni t \to 0\), i.e., \(S_k(t)\) is strongly continuous on \(\Sigma_\theta \cup \{0\}\) and therefore the claim follows from Lemma 4.1.

Case 2. Fix \(x \in X\). Then for arbitrary \(\epsilon > 0\), there exists \(\delta > 0\) such that \(\|C(s)x/s^k\| < \epsilon\) \((0 < s < \delta)\). Thus we have (cf. the proof of Lemma 4.1(a))

\[
T_k(t)x = x = (-1)^n(\pi t)^{-1/2} \int_0^\infty [D^*_s \exp(-s^2/4t)]s^n(C(s)x/s^n - x/n!)ds \to 0
\]
as $\Sigma_\theta \ni t \to 0$ for $x \in X$ and therefore the claim also follows from Lemma 4.1.

In the case $n = 1$, Cor.4.2 (with $d = 0$) and Th.4.3 (with $d = 1$) were shown in [1, Th.5.2]. In the case $d = 0$ we obtain

**COROLLARY 4.4.** Let $(A, C(t)) \in G_0(X)$. Then for every $\theta \in (0, \pi/2)$

(a) If $n = 2m$ then $(A, S(t)) \in H_m(\theta, \omega^2/\cos^2 \theta, X)$, where $S(t) = T_0(t)$ for $t \in \Sigma_\theta$ and $S(0) = \delta_{2m} I$.

(b) If $n = 2m + 1$ then $(A, T_1(t)) \in \tilde{G}(X)$ and $(A, S(t)) \in H_{m+1}(\theta, \omega^2/\cos^2 \theta, X)$, where $S(t) = T_{-1}(t)$ for $t \in \Sigma_\theta$ and $S(0) = 0$.

The results relating to Cor.4.4 see [5, 8].

5. INTERPOLATION AND EXTRAPOLATION

In this section we will give some results on interpolation and extrapolation of integrated cosine functions, which are analogous to the results of integrated semigroups obtained by Arendt et al [2]. In the sequel, $X$, $Y$ and $Z$ are Banach spaces. $X \hookrightarrow Y$ means that $X$ is a subspace of $Y$ and that the inclusion is continuous. We write $X \hookrightarrow_a Y$, if in addition $X$ is dense in $Y$.

**THEOREM 5.1.** Let $B \in G_0(Y)$ and $[D(A^m)] \hookrightarrow X \hookrightarrow Y$ for some $m \in \mathbb{N}$. In the case $m \geq 2$ assume in addition that $R(\lambda_0, B) X \subset X$ for some $\lambda_0 \in \rho(B)$. Then $B_X \in G_{2m}(X)$.

**PROOF.** Let $(B, S(t)) \in G_0(\omega, Y)$ and $(A, T(t)) = \int_0^t (t-s)^{2m-1} S(s)ds/(2m-1)!$. Since by Prop.1.2(f) (with $n = 0$)

\[ C(t) = \sum_{i=0}^{m} \binom{m}{i} \lambda_i^{m-1} (-1)^i \int_0^t (t-s)^{2m-2i-1} S(s)ds + \sum_{j=1}^{m-1} \frac{t^{2j}}{(2j)!} R(\lambda, B)^m \]

for $t \geq 0$, our assumptions (noting $R(\lambda_0, B) X \subset R(\lambda_0, B) Y \subset D(A) \subset X$ for $m = 1$) imply the strongly continuity of $(t)_{X}$ and $\|C(t)_{X}\| \leq Me^{\omega t}$. The claim now follows from

\[ \lambda R(\lambda^2, B_X) = \lambda R(\lambda^2, B)_{X} = \int_0^\infty e^{-x} S(s)ds = \lambda^m \int_0^\infty e^{-x} C(s)_{X}ds \quad \lambda > \omega. \]

Similarly to [1, Lemma 2.4] we can show that if $(A, C(t)) \in G_{2m}(Y)$, and if $D(A) \neq Y$ in the case $m = 0$ and $C(\cdot) \not\in C(R^+, [D(A)])$ for some $y \in Y$ in the case $m > 0$, then $[D(A)] \hookrightarrow X \hookrightarrow Y$ for some $Y$, $(A_X, S(t)) \in G_{2m+2}(X)$, and $S(\cdot) \not\in C(R^+, [D(A_X)])$ for some $x \in X$. From this we can deduce the following theorem (cf. the proof of [1, Th.0.1(b)]).

**THEOREM 5.2.** Let $B \in G_0(Y)$ and $D(B) \neq Y$. Then $[D(B^m)] \hookrightarrow X \hookrightarrow Y$ for some $X$, and $B_X \in G_{2m}(X)$.

The converse of Th.5.1 and 5.2, i.e., an extrapolation of integrated cosine functions is as follows.

**THEOREM 5.3.** Let $A \in G_{2m}(\omega, X)$. Then $[D(A^m)] \hookrightarrow X \hookrightarrow_a Y$ for some $Y$, $A = B_X$ for some $B \in G_0(Y)$, and $[D(A^m)]$ is maximal unique (i.e., $Z \hookrightarrow X$ and $A_Z \in G_0(\omega, Z)$ imply $Z \hookrightarrow [D(B^m)]$).

**PROOF.** Let $C(t)$ be generated by $A$. We first show that for $x \in D(A^m)$ and $t, s \geq 0$

\[ 2C^{(2m)}(t)C^{(2m)}(s)x = C^{(2m)}(t + s)x + C^{(2m)}([t - s])x. \]  

(8)

In fact, set $P_\lambda = \lambda R(\lambda^2, A)$ for $\lambda > \omega$ and $y = R(\lambda_0, A)^m x$ for some $\lambda_0 > \omega$, then

\[ \int_0^\infty \int_0^\infty 2e^{-\lambda t - \mu s} C^{(2m)}(t)C^{(2m)}(s)ysdtdsdt = 2P_\lambda P_\mu y = \frac{1}{\lambda + \mu} (P_\mu - P_\lambda)y + \frac{1}{\lambda + \mu} (P_\lambda + P_\mu)y \]

\[ = \int_0^\infty \int_0^\infty e^{-\lambda t - \mu s} C^{(2m)}(t + s)y + C^{(2m)}([t - s])ydsdtd \quad \mu > \lambda > \omega, \]

and so (8) holds for $y$. Integrating this $2m$-times with respect to $t$ we find that the equation obtained holds for $x$. Now, (8) follows by differentiating this equation $2m$-times with respect to $t$.

Next, let $Y$ be the completion of $X$ with respect to $\|x\|_Y \equiv \sup_{t \geq 0} \|e^{-t} C^{(2m)}(t) R(\lambda_0, A)^m x\|_X$. Then $X \hookrightarrow_a Y$. Since we can show by (8) and Prop.1.2 that

\[ \int_0^\infty (-s)^k e^{-\lambda s} C^{(2m)}(t + s)x + C^{(2m)}([t - s])xds = C^{(2m)}(t)(\lambda R(\lambda^2, A))(k)x \]

\[ \int_0^\infty (-s)^k e^{-\lambda s} C^{(2m)}(t + s)x + \int_0^\infty (-s)^k e^{-\lambda s} C^{(2m)}([t - s])xds = C^{(2m)}(t)(\lambda R(\lambda^2, A))(k)x \]
for $x \in D(A^\alpha), \ k \in \mathbb{N}_0$ and $\lambda > \omega$, it follows that

\[
\|\lambda R(A^\alpha) x\|_Y \leq \frac{1}{\lambda} \sup_{t \geq 0} \left\{ \int_0^t e^{-(\omega-\lambda)s} ds + \int_0^\infty e^{-(\omega-\lambda)(s-t^2)} ds + \int_0^t e^{-(\omega+\lambda)s} ds \right\} \|x\|_Y
\]

\[
\leq k!(\lambda - \omega)^{-k} \|x\|_Y \quad \text{for } \lambda > \omega, \ k \in \mathbb{N}_0 \text{ and } x \in X. \quad (9)
\]

It follows that $R(A^\alpha, A)$ has a unique extension $R(A^\alpha) \in L(Y)$ and so $R(A^\alpha) (\lambda > \omega)$ is a pseudo resolvent on $Y$. We show that $\lim_{\lambda \to \infty} \|\lambda R(A) y - y\|_Y = 0$ for $y \in Y$. Indeed, from (9) (with $k = 0$) it suffices to show this for $y \in X$. Let $x = R(\lambda_0, A) y$. Then the same method as in the proof of [1, (3.5)] leads to

\[
\|\lambda^2 R(\lambda^2) y - y\|_Y = \sup_{t \geq 0} \|e^{-\omega t}(\lambda^2 R(\lambda^2, A) - I)C(2\lambda^2)(t)|x| \leq I_+ + I_- \to 0
\]

as $\lambda \to 0$ where $I_+ = \frac{1}{2} \sup_{t \geq 0} \int_0^\infty e^{-\lambda(s + t)}(C(2\lambda^2)(|s + t|)-C(2\lambda^2)(|t - s|)) ds |x|$. Thus there exists a densely defined linear operator $B$ on $Y$ such that $(\omega^2, \infty) \subset \rho(B)$ and $R(\lambda) = R(\lambda, B)$ for $\lambda > \omega^2$. It now follows from (9) that $B \in G_0(Y)$. The rest can be proved as in [2, §3].

COROLLARY 5.4 If $D(A) = X$ and $p(A) \neq 0$. Then the following statements are equivalent.

(a) $A \in G_{2m}(X)$.
(b) $[D(A^m)] \hookrightarrow Z \hookrightarrow X$ for some $Z$, and $A_Z \in G_0(Z)$.
(c) $[D(B^m)] \hookrightarrow X \hookrightarrow Y$ for some $Y$ and some $B \in G_0(Y)$, $R(\lambda_0, B) X \subset X$ for some $\lambda_0 \in \rho(B)$, and $A = I_X$.

After the paper was accepted, the author understood that the equivalence of (a) and (b) has been extended to the case $D(A) \neq X$ by Shaw and Li [7]. But Th. 2.1 and 2.2 cannot be deduced by combining this with the corresponding results of cosine functions because the norm $\|\cdot\|_m$ is not equivalent to the norm of $Z$ (see Cor. 5.4(b)).

ACKNOWLEDGEMENT. This project was supported by the National Science Foundation of China. I wish to thank Dr. deLaubenfels for sending me reference [7].

REFERENCES

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru