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ABSTRACT The chaotic dynamics ofthe map x) (]Ix + a) (mud 1) are studied using Parry’s fl-
expansion. It is shown that for < fl < 2,a > 0, the number of periodic points of period n is 0)
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1. INTRODUCTION
When ]/is an integer, the dynamics ofthe mapx) (+ a) (mud 1) are rather simple. is

topologically conjugate to the shift automorphism o on the space ’l{SlS2...s {0, l,...,]t- 1}}, which,

in the terminology ofDevaney (1989% implies that it is chaotic (see Def. 2 below). The number of

periodic points of period n is ,/P, because the period points ofo on / are precisely the sequences of

the form s,...s,, s, {0,1,.--,]/- 1}. And there is a unique invariant Borel measure, differentiable on

[0,1 ]: the characteristic function Z[0,1] (Parry, 1960).

When 13 is not an integer, things are not quite so tidy. There is still an invariant Borel measure

differentiable on [0,1 (Sinai, 1981), although it is zero almost everywhere. However, although the map
may still be proved chaotic by demonstrating a conjugacy with a shift map, the space Ap on which this

shift map acts is somewhat problematic. We will deal only with the case < ]3 < 2, although most ofthe
results generalize straightforwardly. In this case, an analysis of A/ reveals that the number of periodic

poims of period n is asymptotically proportional to #(n), the number ofbinary sequences sis2. ..s, so

that:

ff’lsl+...+ff-nsn <_

if-Is2 +.-.+,3’-n+lsn <

if-Is <_

IfX is a random variable on R, with probability densityf so that supp(f) [0,1 ], let 9’f denote the

probability density of 2’). Then, we show that 9d2’[0.11(0) ff-n #(n) It follows that
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#(n) O(ff’), since lim VnZI0,11(0) exists by the ergodicity of the mapping (Sinai, 1981) This resul,

is new and apparently cannot be obtained from standard methods such as kneading theory (Coilet and
Eckmarm, 1980) From here on, we will assume < fl < 2, a >_ 0

2 INVARIANT MEASURES
Where a 0, Parry (1960) has studied the invariant measure of, and shown that it is umque In

general, any invariant measure of is characterized by a Frobenius-Perron operator W.
LEMMA IfO<x_< l, then f(x)=ff’[f(ff’x-ff’a)+f(ff’x-ff’a+ff’)+

PROOF. P(a<_ X < x)= P(ff’a-ff’a<_ X <_if’x-if’a)+
P(/Yct-ff’a+/3-’ <_ X <-fl-tx-fl-’a+D-’) +P(ff’ot-ff’ot+2ff’ < X

In terms of densities, this means
ff-ix_a- ff-x_tFl a+a-I

(t)dt f(t)dt + f(t)dt + f(t)dt
-ta-O-a /Fa-/-a./T -a_/Ftct+2H

Dierentiating, one obtains the lemma.

A measurefis invariant under if and only if it is a fixed point of the operator (see Lasota,
1973) From this equation, one may deduce certain simple properties of :. For instance, it is easy to

see that if = 0,/() =’/(’)= -/(0).
Next, let us derive a formula for the n’th iterate of /

LEMMA2. v"f(x) ff".,f(ff"x-ff"a+al"’),where{a’,"’ -’"’} is the set of all..,
expansions fl-ls +ff-2s2+...+ff-nsn so that s, {0,1} and

ff-lx+/-lsl +ff-2s2+...+-nsn <

ff-n+lx +flls2 +...+fl-n+lsn <

lx+ff-s, _<

PROOF. Lemma takes care ofthe case n l, so we may proceed by induction. Assume that

a 0 and that the statement is true for n k 1. Then

f(.X’) __,-I[ -l(/r-Ix) + -l(ff-lx. +/r-’)]
2t-I

(-)/r’ ’+’ Xf(/r’+’’ + ,, +
=!

l=l

2

t=l

This shows that the statement is true for n k If" a 0, the lemma follows from the observation that,
where /l is the operator corresponding to ) (/It + a) (rood ), and /is the operator corresponding
to x) =,B (rood I), v,f() /f(x a).

This lemma permits us to estimate asymptotically the number #(n) defined above. The problem
of determining #(n) for arbitrary n is apparently unsolved and seems to be very difficult.

PROOF Take a=0 :f()=,B-"f(,/"’)..., Take f ZI0.I, then :f(a)=ff"#(n) V
n

t=l

converges to an invariant measure, because is ergodic (Sinai, 1981) Thus #(n) O(,)



DYNAMICS OF THE RADIX EXPANSION MAP 145

3 APPROXIMATION WITH INTERVAL MAPS

Computer simulations have played a large role in the development ofthe theory of chaotic

dynamical systems. One way to simulate the probabilistic behavior of a chaotic map like is to

approximate the map by a sequence of interval maps.

Givenameasure/sothatsupp(f) [0,1],letP.n) P(n)=(Pl(n).,P(nn))T,.- where

t/n /n

P f(x)dx Let en be the n x n matrix defined by (nP(n)) t//f(x)dx
(t-l)/n -1

PROOF. (9n) is the probability that, after k iterations of, the image of a point selected from a

uniform distribution on [i-n ,)is in [i-,) Because is ergodic, for any two open intervals Uand

V there is some k so that the Lebesgue measure of v(U)V is nonzero

THEOREM 2 n has a unique fixed point/3(n)

PROOF Since ]lll l, P(p’n)<_ 1. And since .,(An)ty 1, is an eigenvalue f ATn with
j=l

corresponding eigenvector (1,.-., 1), and hence is an eigenvalue of An and p(An 1. According to a

standard linear algebra result, Lemma 3 implies that the multiplicity of is Thus there is a unique
eigenvector/3(n) corresponding to the eigenvalue 1.

Given this result, it is easy to see that these/3in) converge to the invariant measure. For any

x [0,11, let In(x)denote the interval/i-2,) which containsx. LetSn denote the set of all step

functions constant on each interval [i-1 t__/ Let .(n) be the element of Sn naturally induced by
L n ’n/

Then we have

THEOREM 3. lim y(n) y.
These results show that the interval maps n are qualitatively faithful representations of W. The

chaotic behavior of is necessarily absent from any discrete approximation, but the probabilistic
implications ofthis chaos are accurately mirrored.

4. DYNAMICS
DEFINITION 1. Where s Sl...sn... is a binary sequence, let

Bp(s)=ff-lsl +ff-2s2+...ff-nsn+... Let F/ be the set ofall s= sl...s or s= sis2.., so that B(s) >

Let A/ be the set of all s sis2.., so that slSk+l...Sk+m F, sksk+l...F, for any k and .
F/ is the set of all "forbidden subsequences", and A/ is the set of all sequences containing no

forbidden subsequences.
LEMMA 4. For each x [0,1] there is a unique binary sequence s A/ so that B(s) x.

PROOF Existence is clear, one forms an expansion B/ exactly as one forms an expansion in an

integer base. To show uniqueness, assume x Bfl(SlS2... sn_ lSn+l--. and

x Bfl(SlS2... sn_10s+ls+2... Then the second expansion is not in A/
Chaos may be defined in many different ways Here we will adopt the topological approach found

in Devaney (1989)
DEFINITION 2 A function r [0,1 -- [0,1 is chaotic if i) it is topologically transitive,

ii) its periodic points are dense, iii) it is sensitive to initial conditions
LEMMA 5. [0,1] [0,1] is topologically conjugate to the shift map cr A/ -+ A/, where

PROOF. Follows from Lemma 4 by standard arguments
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THEOREM 4 is chaotic on [0,1 [0,1
PROOF. i) 4 is topologically transitive because, where {WlW2W3,--- is an enumeration of

A, s wlOOw2OOw300... Is in ,4# and B(s) is a dense orbit, ii) The set of periodic points in of

period n is"{B(s).s ,4, s=s,,...s,s, {0,1}} For example, everything of the form B(sls2...snO0
is periodic, and these points are clearly dense, iii) Follows from standard arguments

THEOREM 5 Ifa and [3 are rational, all periodic points of are rational.

PROOF. if a 0, a little algebra shows that all periodic points are of the form

[SLff-l+...+snff-n/[fln-1],s {0,1}. The general case follows similarly

These results can also be obtained by more conventional methods (Collet and Eckmann, 1980).
However the present techniques tell us considerably more about the periodic points of than Theorem 4
requires. Let Pern (b) denote the set of periodic points of of period n. For a 0 and 13 integral, it is
obvious that Card[Per ()] if’. This result cannot be directly generalized to the case of nonintegral
since Card[Per ()] is integral but ff is not. However, the following result is an asymptotic

generalization.
THEOREM 6. Per. (#) O(ff’
PROOF: {B(s):s A,s= s,...s,_2,s {0,1}} c Per,(cb), but

Per,(qb) c {Bp(s):s A,s s,...s,,s, {0,1}}. So #(n- 2) < Card[Per,(qb)] <#(n), and the result

follows from Theorem 1.

NOTE: Since submitting this paper, the authors have become aware ofunpublished work by Leo Flatto
which contains the result Card[Per ()] O(ff) for the case a 0. Flatto’s techniques are combinatorial

rather than 0perator-theoretic, and apparently cannot be extended to the case a ;e 0. We would like to

thank J. Lagarias for informing us ofFlatto’s work.
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