ABSTRACT. Let G be a group with binary operation \cdot. Let T be a topology for G such that for all $g \in G$ the maps $m : G \times G \to G$ defined by $m(f) = f \cdot g$ and $g \cdot m(f) = g \cdot f$, respectively, are continuous. Then (G, T) is called a semitopological group. Some specific set-set topologies for function spaces are discussed and the concept of topologically determined collections of sets is introduced and used to classify some set-set topologies as semitopological groups.

KEY WORDS AND PHRASES. Point-open topology, compact-open topology, g-topology, $eta$-topology, topologically determined collection of sets.

1. INTRODUCTION.

Husain [1] defined a semitopological group as a group, G, with a binary operation \cdot, and a topology, T, such that both right and left "multiplication" are continuous. We shall define the concept of topologically determined collections of sets and present some results which help classify some set-set topologies on function spaces as semitopological groups.

2. SOME TOPOLOGIES FOR FUNCTION SPACES.

Before beginning our discussion of semitopological groups, we present the definitions of some topologies for function spaces to which we will be referring.

DEFINITION 1. [2] Let (X, T) and (Y, \tilde{T}) be topological spaces. For $p \in X$ and for $U \in T$, define the set $\{(p), U\} = \{f \in Y^X : f(p) \in U\}$. Then, we define $S = \{(p), U\} : p \in X$ and $U \in T \}$. S is a subbasis for a topology, T_p, on Y^X, called the point-open topology.

DEFINITION 2. Let (X, T) and (Y, \tilde{T}) be topological spaces. For $K \subseteq X$ and for $U \subseteq Y$, define the set $(K, U) = \{f \in Y^X : f(K) \subseteq U\}$. Next, we define the sets

$S_{co} = \{(K, U) : K \text{ is a compact subset of } X \text{ and } U \in \tilde{T}\}$ and $S = \{(K, U) : U \in T \text{ and } (X \setminus K) \in \tilde{T}, \text{ and either } K \text{ or } (Y \setminus U) \text{ is compact}\}$. Then S_{co} and S are subbases for topologies, T_{co} and T_{g}, respectively, on Y^X. T_{co} is called the compact-open topology [2], while T_{g} is named the g-topology [3].

These three topologies are related as follows: $T_p \subseteq T_{co}$ and if X is T_2, then $T_{co} \subseteq T_{g}$. T_2 is needed so that compact sets in X are closed.
DEFINITION 3. Let \((X,T)\) and \((Y,T)\) be topological spaces. For \(U \subseteq X\) and \(V \subseteq Y\), define the set \(B(U,V) = \{f \in Y^X : f(U) \cap V \neq \emptyset\}\). Then we set \(S = (B(U,V) : U \in T \text{ and } V \in T)\). Then \(S\) is a subbasis for a topology on \(Y^X\) called the \(B\) topology which will be denoted by \(T_B\).

THEOREM 1. Let \((X,T)\) and \((Y,T)\) be topological spaces and let \(F \subseteq C(X,Y)\). Then \(T_B \subseteq T_P\).

PROOF. Let \(B(U,V)\) be a subbasic open set in \(T_B\). Then \(B(U,V) = \bigcup_{x \in U} \{(x), V\} \subseteq T_P\). Thus, \(T_B \subseteq T_P\).

Note that if \(X\) is discrete or \(T\) is trivial, then \(T_B = T_P\). However, the converse of this statement is not true as Example 1 will show.

EXAMPLE 1. Let \(X = \{1,2,3,4\}\). Let \(T = \{\emptyset, X, \{1,2\}, \{3,4\}\}\) be a topology on \(X\). Then \(T\) is obviously not discrete. \((\{1\}, \{1,2\})\) and \((\{3,4\}, \{3,4\}\) are non-empty subbasic proper open sets in \((C(X,X), T_B)\) and \(\emptyset, \{1\}, \{3,4\}\) \(\neq\) \((\{1\}, \{3,4\}\). So we see that \(T_B\) is trivial. But \(T_P = T_B\).

EXAMPLE 2. Let \(X = \mathbb{Z}^+\) with the cofinite topology, \(T_{\text{cof}}\), i.e., \(O \subseteq T_{\text{cof}}\) if and only if either \(X \setminus O\) is finite or \(X = \emptyset\). So, if \(O, V \subseteq T_{\text{cof}}\) are not empty, \(O\) and \(V\) are infinite and there exists \(j \in X\) such that for all \(k \geq j, k \in O \cap V\). \(B(O,V) = B(X)\) if \(O, V\) are non-empty. \((H(X), T_B)\) is trivial. But \((H(X), T_P)\) is not, since not every homeomorphism belongs to \((\{1\}, \{10, 11, 12, \ldots\})\). So we see that \(T_B\) is not always the same as \(T_P\).

3. SEMITOPOLOGICAL GROUPS.

Note, before we continue, that \(H(X)\) is a group with binary operation, \(\circ\), composition, and identity map, \(e(x) = x\), for every \(x \in X\).

DEFINITION 4. Let \(G\) be a group with binary operation, \(\circ\). A topology \(T\), for \(G\), is called RMC (LMC) provided that, for every \(g \in G\), the map \(m_g : G \to G, (g \in G, (m_g(f) = f \circ g, (m_g(f) = f \circ g)\), is continuous. Here, "RMC" stands for "right multiplication continuous" and "LMC" for "left multiplication continuous."

The topology of uniform convergence, \(T_U\), on a subgroup of \(H(X)\), is always RMC and is LMC under certain conditions. This topology will give us an example of a topology which is not both RMC and LMC.

THEOREM 2. Let \((X,U)\) be a uniform space. Let \(G\) be a subgroup of \(H(X)\). Let \(\tilde{U}\) be the induced uniformity on \(G\). Then \(T_U\) is RMC.

PROOF. Recall, given a uniform space, \((X,U)\) for each \(U \subseteq U\), define the set, \(\tilde{U} = \{(f,g): (f(x),g(x)) \in U \text{ for all } x \in X\}\). Set \(B = \{\tilde{U} : U \subseteq U\}\). Then \(B\) is a basis for a uniformity on \(G, \tilde{U}\) which in turn induces a topology, \(T_{\tilde{U}}\) on \(G\).

Assume \(g \in G\) and let \(O\) be open in \(T_U\). Let \(f \in m_g^{-1}(0)\), then \(f \circ g \in O\). Hence there exists \(U \subseteq \tilde{U}\) such that \(f \circ g \in \tilde{U}[f] \subseteq O\). Let \(h \in \tilde{U}[f]\). Then \(h \circ g \in \tilde{U}[g] \subseteq O\), and we have that \(h \in m_g^{-1}(0)\). \(\tilde{U}[f] \subseteq m_g^{-1}(0)\).

Thus, \(T_U\) is RMC.

DEFINITION 5. \([1]\) Let \(G\) be a subgroup of \(H(X)\). Let \(T\) be a topology for \(G\) such that \(T\) is both LMC and RMC. Then \((G,T)\) is called a semitopological group. We will denote this by STG.
THEOREM 3. Let \((X, U)\) be a uniform space. Let \(G\) be a subgroup of \(H(X)\). Let \(\tilde{U}\) be the induced uniformity on \(G\). Then, if \(g \in G\) implies that \(g\) is uniformly continuous w.r.t. \(U\), then \((G, T)\) is a STG.

PROOF. Assume \(g \in G\) and \(O\) is open in \(G\). Let \(f \in g^{-1}(0)\). Then \(gof \in 0\). Hence there exists a \(U \in \tilde{U}\) such that \(gof \in \tilde{U}[gof] = \{h \in G : (gof, h) \in \tilde{U}\} \subseteq 0\). By definition of uniform continuity, there exists \(V \in \tilde{U}\) such that if \((p, q) \in V\) then \((g(p), g(q)) \in \tilde{U}\). Set \(W = U \cap \tilde{V}\). Then \(gof \in \tilde{W}[gof] \subseteq \tilde{U}[gof] \subseteq 0\). Claim: \(W[f] \subseteq g^{-1}(0)\).

EXAMPLE 3. Let \(X = \mathbb{R}\), the reals with the usual uniform structure, i.e., for each \(\varepsilon > 0\), we have the basis element \(U_\varepsilon = \{(x, y) : |x - y| < \varepsilon\}\). Then a basis for the induced uniformity on \(H(X)\) is the collection of all sets of the form, \(U_\varepsilon \subseteq \{(f, g) : (f(x), g(x)) \in U_\varepsilon\}\). Let \(g(x) = x^3\) and let \(e(x) = x\). Let \(\varepsilon > 0\) be given. Then since \(goe = g\), \(e \in g^{-1}(U_\varepsilon[g])\). Now let \(\delta\) be a positive number, so \(e \in U_\delta[e]\). Then define \(h(x) = x + \frac{1}{2}\delta\). Hence, \(h \in U_\delta[e]\). But \(goh(x) = (x + \frac{1}{2}\delta)^3\), which gives that \(\frac{goh(x) - g(x)}{h - e} = 3\delta x^2 + 3\delta^2 x + \frac{1}{4}\delta^3\) and this function has no maximum on \(\mathbb{R}\), hence \(h \notin g^{-1}(U_\delta[g])\). So, \(g\) is not continuous. \(T_{\tilde{U}}\) is not LMC.

4. TOPOLOGICALLY DETERMINED COLLECTIONS OF SETS.

DEFINITION 6. Let \(X\) be a topological space. Let \(O \subseteq P(X)\), the collection of all subsets of \(X\), with the property that for each \(f \in H(X)\), if \(A \in O\) then \(f(A) \in O\). Then \(O\) is a topologically determined (TD) collection of sets.

THEOREM 4. Let \((X, T)\) be a topological space and let \(\tilde{U}\) and \(\tilde{V}\) be collections of subsets of \(X\). Let \(G\) be subgroup of \(H(X)\). Let \(S(\tilde{U}, \tilde{V}) = \{(U, V) : U \subseteq \tilde{U} and V \subseteq \tilde{V}\}\) where \((U, V) = \{f \in G : f(U) \subseteq V\}\). If \(S(\tilde{U}, \tilde{V})\) is a subbasis for a topology, \(T(\tilde{U}, \tilde{V})\), on \(G\), and if \(\tilde{U}\) and \(\tilde{V}\) are TD collections of sets then \((G, T(\tilde{U}, \tilde{V}))\) is a semitopological group.

PROOF. Let \((U, V)\) be a subbasic open set in \(T(\tilde{U}, \tilde{V})\) and let \(f \in G\). Assume \(g \in f^{-1}(U, V)\) and \(h \in m^{-1}(U, V)\). Then \(gof(U) \subseteq V\) and \(foh(U) \subseteq V\).

Note from the proof of Theorem 4, that if \((G, T(\tilde{U}, \tilde{V}))\) is as defined in Theorem 4, then if \(\tilde{U}\) is TD, we have that \((\tilde{U}, \tilde{V})\) is RMC. Similarly, if \(\tilde{V}\) is TD then \((\tilde{U}, \tilde{V})\) is LMC.

Some of the TD collections of sets for a topological space, \(X\), are:
1) all the open subsets of \(X\)
2) all the closed subsets of \(X\)
3) all the compact subsets of \(X\)
iv) all the singleton subsets of X

v) all the connected subsets of X

vi) all the regular open subsets of X

vii) all the regular closed subsets of X

Considering the above list, we have the following:

COROLLARY 4.1. Let X be a topological space and let G be a subgroup of $H(X)$. Then (G,T) is a STG when $T = T_p$ or T_{co}.

PROOF. Theorem 4 along with i, iii, and iv above give us the desired conclusion.

THEOREM 5. If $U_1, U_2, V_1,$ and V_2 are TD collections of subsets of X, then (G,T) is a STG where T is the smallest topology containing both $T(U_1,V_1)$ and $T(U_2,V_2)$. (We denote this by $T = T(U_1,V_1) \vee T(U_2,V_2)$.)

PROOF. T has as a subbasis, S, the union of the subbases $S(U_1,V_1)$ and $S(U_2,V_2)$ of $T(U_1,V_1)$ and $T(U_2,V_2)$ respectively. So if $(U,V) \in S$ then either $(U,V) \in S(U_1,V_1)$ or $(U,V) \in S(U_2,V_2)$, from which our conclusion follows.

COROLLARY 5.1 Let (X,T) be a T_2 topological space. Let G be a subgroup of $H(X)$. Then (G,T) is a STG.

REFERENCES

Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be