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ABSTRACT. The classical Kelvin principle concerns invariance of solutions of the
Laplace equation with respect to inversion in a sphere. By employing a hyperbolic-
polar coordinate system, the principle is extended to cover a class of singular

equations, which include the ultrahyperbolic equation.
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1. INTRODUCTION.

As is well known the classical Kelvin principle introduced in 1847 (Thomson [1])
concerns solutions of the Laplace equation. For solutions of some class of elliptic
differential equations and their iterated forms in »n independent variables, n 2 2 ,
the extension of Kelvin principle is usually proved using rectangular coordinates
(Diaz and Martin [2], Germain and Bader [3], Huber [u4], Weinstein [5] ). In 1960

a generalization of Kelvin principle was established by Weinstein [5] for the
equation

using polar coordinates.

Following Weinstein method we shall give in this paper a new formulation of

Kelvin principle for solutions of the class of singular partial differential
equations

n 32u ai du m 3211 B3 au 1
Lw = I (5 +—=)- 2 (+-L5)+—Pu=o0 (1.1)
i=1 9x X. 09X j=1 a3y ¥ ayj 2
where @y (1 £1i<n) and Bj (1 £j <m) are real parameters, r is the lorentzian
metric defined by
n m
2 2
r = I x - I y. (1.2)
i= =173
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and P is a general linear operator of arbitrary order q in the variables Zys Zg»
eees zp vanishing for u = 0.

The domain of the operator L is the set of all real valued functions u(x,y,z)
of class C (D)an(Q), where x = (xl,....,x )o y = (yl, eV ) and z = (z ,...,z )
denote polnts in ", R" and Rp respectively, and D x Q is a regularlty domaln of
u in R X Rp .

2. HYPERBOLIC-POLAR COORDINATE SYSTEM FOR EQUATION (1.1).

First let us consider the n+m-dimensional Laplace operator

o 2 m 2
9
Au = % Q—E? + @ 24 (2.1)
i=1 9 Xs j=1 3 xn+j
and introduce the polar coordinates
X = r COS§_COS§_...cos cosg _cos ...COS cos
1 el 2 em—l em em+l em+n-2 em+n-l
X = r cos® _cosb ...cosf cos® cos6 ...cosf sin®
2 1 2 m-1 m m+1 m+n-2 m+n-1
= r cosf_cosf_...cos@ c cos® ...si
X3 1°9%% m-15050n 0080y SIne L
= r cos6_cosf_...cos@ cosf sin6 2.2
Xn 1 2 m-1 © m m+1 ( )
= c SB,_ ...C i
4l r oselco 92 osem_131nem
X eme1 =r coselsine2
x = r sing
n+m 1
where 0 < ej < 7 for j =1,...., ntm-2, 0 < en+m-l < 2n  and
o= 2t e v x2 )2 (2.3)
1 n+m

Under this change of variables, the polar form of the Laplace operator is given by

2 2
n+m
au 3 n+m-1 3u 1 s (2.4
Au=.2—2'—_2'+_—" +—2-l(u) )
i=1 axi ar r dr r
where the operator ¢; depends only on the variables 6;, . . ’en+m—l and r is the
Euclidean distance given by (2.3).
Now in (2.1) and (2.2) let x_ .. = iy. and ¢, = i¢, for j =1, ..., m with
n+j J ] ] 2 2
i = /-1 and let em+j = wj for j = 1,...,n-1. Since (3/3xn+j) u = - (a/ayj) u,

cos(i¢.) = ch ¢, and sin(i¢,) = i sh ¢j, the operator (2.1) reduces to the ultrahy-
] ] ]

perbolic operator

n 32 m 32
u= £ 3 - I — (2.5)
i=1 3x, 3=1 3y,

On the other hand, the polar coordinate system (2.2) takes the form
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X, = r ch¢1ch¢2...ch¢m_ ch¢mcoswl...coswn_zcoswn_l

1 1
%, =r ch¢lch¢2...ch¢m_lch¢mcoswl...coswn‘2sinwn-l
Xy = Ch¢1Ch¢2'"Ch¢m~1Ch¢mcosw1'"Slnwn—2
= e i 2.6
x, =T ch¢lch¢2 ch¢m_lch¢m81nwl (2.6)

= . h
‘A r ch¢lch¢2 ch¢m_ls ¢m

y2 =r ch¢1ch¢2...sh¢m_l

e e s e s e o e

ym-l= r ch¢lsh¢2

Y =r sh¢l

where r is the Lorentzian distance given by (1.2). We refer to this as '"polar-
hyperbolic transformation'". In the polar-hyperbolic coordinate system, the operator

(2.5) assumes the form

2 2 2
n m _
=z 33- 5 23 2y, mmldu, 1 8, () (2.7)
i=1 ax, j=1 dy. p r ar r
1 ]
where ¢2 depends only on the variables ¢l,...,¢m,w1,...,wn_l and r is given in (1.2).
For example, the polar forms of Au for n = 2, 3 are given by
1
Au = u + -u + l-uee
rr Pr’ rz
Au = u ‘]'zu + l—(uee+coseue lﬂ)
™ p T r? sin 6 sinZe o¢
The corresponding forms for the hyperbolic equations are given by
1 1
Du_urr+ ;ur- —u
r
2 6
Du=up, + —u - l(“‘e)e" = Y~ 12 Upg)
r r2 ch6 ch“g
where (u=u _+u -u , r? = %2 4 y2 --z2 and x = r chbcos¢, y = r chesing
XX vy 2z 4 4

z = r she .
3. A FUNDAMENTAL THEOREM AND MAIN RESULT.

In [5] , using his main three recursion formulas, Weinstein gave the followin,,
theorem which will be used to establish our main result.

THEOREM 1. Let v = V(r’wl""’wn—l) satisfy the differential equation

2
3V 4 k¥ =L2d><v) (3.1)
3 r r or r

where k is a real or complex number and ¢ is a linear Jifferential operator vanishing

. P . -k s s
for v = 0 which is independent of the variable r. Then ol w satisfies the same
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equation (3.1) in the variables o, wl,..., wn , where p = 1/r and

1
W(pau’la- .. "J)n_l) = v(1/p ’\pla cee ’¢n-l)

Using Theorem 1 we can now establish an extension of Kelvin principle to ultrahy-
perbolic equations :

THEOREM 2. Let u = u(xl,...,xn,yl,...,ym,zl,...,zp) be a solution of the equation
(1.1). Then

2 % L Y,
W=7 u(_29"'$ —g's —]2.%-'0, —I;, Zl,noo,Zp) (3.2)
r r r r

is also a solution of the same equation (1.1), where

n m
A=n+m-2+ I a, + I B. (3.3)
. i .
i=1 j=
and r is the Lorentzian distance defined by (1.2).
PROOF. Let us consider the polar-hyperbolic transformation (2.6) which can be

written in the following form

x. = v £f.(¢,9), 1=1,...,n
* o (3.4)

Y. 1,...,m

5 rgj(duw), 3

where the notations fi(¢,¢), gj(¢,w) or without subscripts f(¢,y), g(¢,y) denote

functions of ¢1""’¢m’wl""’¢n-l .

We note that from (3.4) we have

3 3 m 9% 234, Dn-1 dx_ 3y
o T A T A
axj ar axj i=1 3¢i axj i=1 3¢i axj

= ij

Byk ) ar 2 Wy 3.

1
—_— = = 6jk
3 ar 3 . .

vy % By = 9, dyy

where 6., is the Kronecker delta. From (1.2) we have
J

k
9X.. - Y.
K (1 <j<n) and .3 (L <3 <m
axj ar ayj r

and we may express the partial derivatives a¢i/axj, awi/axj and a¢i/ay, as a quotient

the denominator of which is the Jacobian of the transformation (2.6). It can be

shown that

(X, 5e0esX 3Y 50eesy )
+m-1
1 n 1 LI R TR D)

a(r,¢l,...,¢m,¢l,...,¢n_l)

s . s . n+m-2
The numerator of this quotient contains obviously only a factor r s hence
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' ol (pe, (4,%)
- = —Fji(%'l‘), - = _G-i ¢s¥)y — = — ji [

X, ax, r 3 y.
x:l r 3 y

On the other hand, since

X m
. du
du . Jaw Lo g:p (4,9) + z —G..(¢ ¥))
X, r r i=1 i=1 9,
3 i
3u Yj0u 1 3u
S - —— ¢ - E __H (Q"b)
ayj r Oor r i=1 3¢
we see that
1w 13 1 oy, 1<5<n
xjax r 9p 2
(3.5)
l3u _ _l3du, 1, LW, 1sism
y.ayj r or 2

where the operators Wl and W2 depend only on the variables ¢1,...,¢m,wl,...,wn_l

If we substitute the expressions (2.7) and (3.5) into (1.1), then our equation (1.1)

becomes
2
3 1 n m 1
2u ;(n +tm-1+ Za. + I B.) 22- + - ¥(u) = 0 (3.6)
dr ji=1t §=13 °r r
Since 1-(n#m-1 + I +30_8)=-21,byTh 1
121% j=16j , by Theorem
x Xy o
_ =2 1 1
w=r ul—= 2 sees g — ,..,—7 22y ,..,z )
r

satisfies the equation (1.1). Here we note that, since

m
L0y Y S A S
RN

2
P =

IIM =}
]

the substitutlon D = 1/r in the solution u means replacing the variables x, and y]
i
by x. /r and y /r , respectively.

4. REMARKS.

[N

(i) We note that, since the r defined by (1.2) is not real for Ez_l X
z?=1 y§ , the solutions of (1.1) is valid only in the domain D x @, where

n
2 2
D=D xD ={(x,y) :xeD,yeD, I x; > I y51}
n m n m oL, 1 521 3
is a hyperconoidal domain in Rn+m. Here D and Dm are the spherical domains centered
at the origins of R” and R" R respectlvely, and @ < RP is the regularity domain of

u with respect to the variable z.
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(ii) In equation (1.1) if we have addition instead of subtraction of the two

summations, then Theorem 2 remains valid, where

2 n m

r = z Xi + z y-
i=1 j=1

This includes Weinstein's [5] and Altin's [2] results.

(iii) 1In the special case Pu = Yu where Y= const. the formula (3.2) gives the

result obtained in [2] .

(iv) If we multiply both sides of the equation (1.1) by -1, we get the equation

m 2 . n 2 a,
u y - & (_3_._5.2 + 3 3u )+ _lip(u) =0

©j=1 3 y< . dy. j=1 3 X, x, 9x, r
3 Y:l y YJ J j j j

m 2 n 2 2 . .
= - = - .. .. Z_ 4.
where r] 521 95 521 % r". This shows that if u(x s-«sX ¥ s-es¥ 22,5 ,ZP)
is a solution of the equation (1.1), then by Theorem 2

X X y y

A n 1 m

I e i R B
r r r r

Wty
is also a solution of the same equation (1.1), where A is given by (3.3). It is clear
. 2 . 2
that this solution is valid in a different domain where rl > 0, that is, r < 0.
(v) It is clear that by a simple linear transformation, Theorem 2 also holds
for a more general equation of the form
2 a m 2 B.
i u 1
z a':’(ii2 2, _ 3 b?("’—‘i P13 @ =0
i o .
i= . - =1 9 n, .~Ns: 9N, r
i=1 3ty Liciaci j nyooNg ny ang

o _ o o
where a,, b;,a;, 8, are real parameters (aj #0,b, #0), 27 = (2)5---52) and

=]

o o o . . . .
n = (nl,...,nm) are fixed points in Dn and Dm, respectively. Here

o
° n

o

- - - -n

Y Ql Cl ;n Cn nl nl ' )
W=D u( 9e s 2 PIEY 2a19°',

2 r2 b r2 br P

a,r a; 1 n

where o
2 n Ci—ci 2 m n.—n‘?
r= L ( ) - z( )2
i=1 ai j=1 bj
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