A MINIMIZATION THEOREM IN QUASI-METRIC SPACES
AND ITS APPLICATIONS

JEONG SHEOK UME

Received 25 October 2001

We prove a new minimization theorem in quasi-metric spaces, which improves the results of Takahashi (1993). Further, this theorem is used to generalize Caristi’s fixed point theorem and Ekeland’s ε-variational principle.

2000 Mathematics Subject Classification: 47H10.

1. Introduction. Caristi [1] proved a fixed point theorem on complete metric spaces which generalizes the Banach contraction principle. Ekeland [3] also obtained a non-convex minimization theorem, often called the ε-variational principle, for a proper lower semicontinuous function, bounded from below, on complete metric spaces. Later Takahashi [4] proved the following minimization theorem: let X be a complete metric space and let $f : X \to (-\infty, \infty]$ be a proper lower semicontinuous function, bounded from below. Suppose that, for each $u \in X$ with $f(u) > \inf_{x \in X} f(x)$, there exists $v \in X$ such that $v \neq u$ and $f(v) + d(u, v) \leq f(u)$. Then there exists $x_0 \in X$ such that $f(x_0) = \inf_{x \in X} f(x)$. These theorems are very useful tools in nonlinear analysis, control theory, economic theory, and global analysis.

2. Main results. Throughout this note, we denote by \mathbb{N} the set of all positive integers and by \mathbb{R} the set of all real numbers.

DEFINITION 2.1. A real-valued function Φ defined on a topological space X is said to be lower semicontinuous at x in X if and only if \{ x_λ \} is a net in X and $\lim_{\lambda} x_\lambda = x$ implies $\Phi x \leq \liminf \Phi x_\lambda$.

DEFINITION 2.2 [2]. A real-valued function Φ defined on a topological space X is said to be weak lower semicontinuous at x in X if and only if \{ x_λ \} is a net in X and $\lim_{\lambda} x_\lambda = x$ implies $\Phi x \leq \limsup \Phi x_\lambda$. A mapping Φ is said to be a weak lower semicontinuous on X if and only if it is weak lower semicontinuous for every $x \in X$.

DEFINITION 2.3. A pair (X,d) of a set X and a mapping d from $X \times X$ into real numbers is said to be a quasi-metric space if and only if

\[
d(x, y) \geq 0, \quad d(x, y) = 0 \quad \text{iff} \quad x = y,
\]

\[
d(x, z) \leq d(x, y) + d(y, z) \quad \forall x, y, z \in X.
\]
Definition 2.4. A sequence \{x_n\} in X is said to be a left \(k\)-Cauchy sequence if for each \(k \in \mathbb{N}\) there is an \(N_k\) such that
\[
d(x_n, x_m) < \frac{1}{k} \quad \forall \, m \geq n \geq N_k.
\] (2.2)

A quasi-metric space is left \(k\)-sequentially complete if each left \(k\)-Cauchy sequence is convergent.

Theorem 2.5. Let \((X, d)\) be left \(k\)-sequentially complete quasi metric space such that for each \(x \in X\) the mapping \(u \to d(x, u)\) is a lower semicontinuous on \(X\). Let \(f : X \to (-\infty, \infty]\) be a proper weak lower semicontinuous function bounded from below such that for any \(u \in X\) with \(\inf_{x \in X} f(x) < f(u)\), there exists \(v \in X\) with \(v \neq u\) and \(f(v) + d(u, v) \leq f(u)\). Then there exists \(x_0 \in X\) such that \(\inf_{x \in X} f(x) = f(x_0)\).

Proof. Suppose that \(\inf_{x \in X} f(x) < f(y)\) for every \(y \in X\). For each \(y \in X\), we define \(S(y)\) by
\[
S(y) = \{z \in X : f(z) + d(y, z) \leq f(y)\}. \quad (2.3)
\]

From (2.3) and hypotheses of the theorem we have the following:

(*) For each \(y \in X\), there exists \(v \in X\) with \(v \neq y\) such that \(v \in S(y)\), and for each \(z \in S(y)\), \(S(z) \subseteq S(y)\).

For each \(y \in X\), we define \(A(y)\) by
\[
A(y) = \inf \{ f(z) : z \in S(y) \}. \quad (2.4)
\]

Choose \(u \in X\) with \(f(u) < \infty\). Then we choose a sequence \(\{u_n\}\) in \(S(u)\) as follows: when \(u = u_1, u_2, \ldots, u_n\) have been chosen, choose \(u_{n+1} \in S(u_n)\) such that
\[
f(u_{n+1}) < A(u_n) + \frac{1}{n}. \quad (2.5)
\]

Thus, we obtain a sequence \(\{u_n\}\) such that
\[
d(u_n, u_{n+1}) \leq f(u_n) - f(u_{n+1}), \quad (2.6)
\]
\[
f(u_{n+1}) - \frac{1}{n} < A(u_n) \leq f(u_{n+1}). \quad (2.7)
\]

By (2.6), \(\{f(u_n)\}\) is a nonincreasing sequence of reals and so it converges. Therefore, by (2.7) there is some \(\alpha\) in \(\mathbb{R}\) such that
\[
\alpha = \lim_{n \to \infty} A(u_n) = \lim_{n \to \infty} f(u_n) = \inf_{n \in \mathbb{N}} f(u_n). \quad (2.8)
\]

Let \(k \in \mathbb{N}\) be arbitrary. By (2.8) there exists some \(N_k\) such that \(f(u_n) < \alpha + 1/k\) for all \(n \geq N_k\). Thus, by monotony of \(\{f(u_n)\}\), for \(m \geq n \geq N_k\), we have
\[
\alpha \leq f(u_m) \leq f(u_n) < \alpha + \frac{1}{k}, \quad (2.9)
\]
and hence
\[
f(u_n) - f(u_m) < \frac{1}{k} \quad \forall \, m > n \geq N_k. \quad (2.10)
\]
From the triangle inequality, (2.6) and (2.10), we get
\[d(u_n, u_m) \leq \sum_{i=n}^{m-1} d(u_i, u_{i+1}) \leq \sum_{i=n}^{m-1} [f(u_i) - f(u_{i+1})]\]
\[\leq f(u_n) - f(u_m) < \frac{1}{k}\] \hspace{1cm} (2.11)
for all \(m > n \geq N_k\).

Therefore, \(\{u_n\}\) is a left \(k\)-Cauchy sequence in \(X\). By completeness, there exists \(z \in X\) such that \(u_n \to z\). Since \(f\) is a weak lower semicontinuous; by (2.8), we have
\[f(z) \leq \limsup_{n \to \infty} f(u_n) = \alpha.\] \hspace{1cm} (2.12)
From (2.11), we obtain
\[f(u_m) \leq f(u_n) - d(u_n, u_m).\] \hspace{1cm} (2.13)
Since \(f\) is a weak lower semicontinuous on \(X\) and \(u \to d(x, u)\) on \(X\) is a lower semicontinuous, we have
\[f(z) \leq \limsup_{m \to \infty} f(u_m) \leq f(u_n) + \limsup_{m \to \infty} [-d(u_n, u_m)]\]
\[= f(u_n) - \liminf_{m \to \infty} d(u_n, u_m) = f(u_n) - d(u_n, z).\] \hspace{1cm} (2.14)
Hence
\[d(u_n, z) \leq f(u_n) - f(z).\] \hspace{1cm} (2.15)
From (2.3) and (2.15), we obtain that \(z \in S(u_n)\) for every \(n \in \mathbb{N}\) and hence
\[A(u_n) \leq f(z) \quad \forall n \in \mathbb{N}.\] \hspace{1cm} (2.16)
Taking the limit when \(n\) tends to infinity, we have
\[\lim_{n \to \infty} A(u_n) \leq f(z).\] \hspace{1cm} (2.17)
From (2.8), (2.12), and (2.17), we have
\[f(z) = \alpha.\] \hspace{1cm} (2.18)
Since \(z \in S(u_n)\) and \(u_n \in S(u)\), by (*), we obtain \(z \in S(u)\). Suppose that \(v_1 \in S(z)\) and \(v_1 \neq z\). Then \(f(v_1) < f(z)\) or by (2.18), \(f(v_1) < \alpha\). Since \(v_1 \in S(z)\), \(z \in S(u_n)\) and \(u_n \in S(u)\), by (*), we have \(S(z) \subseteq S(u_n) \subseteq S(u)\). Hence \(v_1 \in S(u_n)\) and \(v_1 \in S(u)\). Thus
\[A(u_n) \leq f(v_1) \quad \forall n \in \mathbb{N}.\] \hspace{1cm} (2.19)
Taking the limit when \(n\) tends to infinity, we get
\[\alpha \leq f(v_1).\] \hspace{1cm} (2.20)
This is in contradiction with \(f(v_1) < \alpha\). Hence \(S(z) = \{z\}\). But, by (2.3) and hypothesis of a function \(f\) in theorem there exists \(y \in X\) such that \(y \neq z\) and \(\{y, z\} \subseteq S(z)\). This is a contradiction. This completes the proof. \(\square\)
Remark 2.6. Theorem 2.5 is a generalization of Takahashi’s minimization theorem [4].

Theorem 2.7. Let \((X,d)\) be left \(k\)-sequentially complete quasi-metric space such that for each \(x \in X\), the mapping \(u \rightarrow d(x,u)\) is a lower semicontinuous on \(X\). Let \(f : X \rightarrow (-\infty, \infty]\) be a proper weak lower semicontinuous function bounded from below. Assume that there exists a selfmapping \(T : X \rightarrow X\) such that

\[f(Tx) + d(x,Tx) \leq f(x) \quad \forall x \in X. \tag{2.21} \]

Then \(T\) has a fixed point in \(X\).

Proof. Since \(f\) is proper, there exists \(v \in X\) such that \(f(v) < \infty\). Put

\[Z = \{ x \in X \mid f(x) \leq f(v) \}. \tag{2.22} \]

Then, since \(f\) is weak lower semicontinuous, \(Z\) is closed. So \(Z\) is left \(k\)-sequentially complete. Let \(x \in Z\). Then, since

\[f(Tx) + d(x,Tx) \leq f(x) \leq f(v). \tag{2.23} \]

So \(Z\) is invariant under \(T\). Assume that \(Tx \neq x\) for every \(x \in Z\). Then by Theorem 2.5, there exists \(u \in Z\) such that \(f(u) = \inf_{x \in X} f(x)\). Since \(f(Tu) + d(u,Tu) \leq f(u)\) and \(f(u) = \inf_{x \in Z} f(x)\), we have \(f(Tu) = f(u) = \inf_{x \in Z} f(x)\) and \(d(u,Tu) = 0\). Hence \(Tu = u\). This is a contradiction. Therefore \(T\) has a fixed point \(u\) in \(Z\). This completes the proof.

Remark 2.8. Theorem 2.7 is a generalization of Caristi’s fixed point theorem [1].

The following theorem is a generalization of Ekeland’s \(\varepsilon\)-variational principle [3].

Theorem 2.9. Let \((X,d)\) be left \(k\)-sequentially complete quasi-metric space such that for each \(x \in X\) the mapping \(u \rightarrow d(x,u)\) is a lower semicontinuous on \(X\). Let \(f : X \rightarrow (-\infty, \infty]\) be a proper weak lower semicontinuous function bounded from below. Then,

1. for any \(u \in X\) with \(f(u) < \infty\), there exists \(v \in X\) such that \(f(v) \leq f(u)\) and \(f(w) > f(v) - d(v,w)\) for every \(w \in X\) with \(w \neq v\);
2. for any \(\varepsilon > 0\) and \(u \in X\) with \(f(u) < \inf_{x \in X} f(x) + \varepsilon\), there exists \(v \in X\) such that \(f(v) \leq f(u)\), \(d(u,v) \leq 1\) and \(f(w) > f(v) - \varepsilon d(v,w)\) for every \(w \in X\) with \(w \neq v\).

Proof. (1) Let \(u \in X\) be such that \(f(u) < \infty\) and let

\[Y = \{ x \in X \mid f(x) \leq f(u) \}. \tag{2.24} \]

Then \(Y\) is nonempty and complete. We prove that there exists \(v \in Y\) such that \(f(w) > f(v) - d(v,w)\) for every \(w \in X\) with \(w \neq v\). If not, for every \(x \in Y\), there exists \(w \in X\) such that \(w \neq x\) and \(f(w) + d(x,w) \leq f(x)\). Since \(f(w) \leq f(x) \leq f(u)\), \(w \in X\) is an element of \(Y\). By Theorem 2.5, there exists \(x_0 \in Y\) such that \(f(x_0) = \inf_{x \in Y} f(x)\). For this \(x_0 \in Y\), there exists \(x_1 \in Y\) such that \(x_0 \neq x_1\) and \(f(x_1) + d(x_0,x_1) \leq f(x_0)\).
Thus we have \(f(x_0) = f(x_1) \) and \(d(x_0, x_1) = 0 \). Hence \(x_0 = x_1 \). This is a contradiction. Therefore (1) holds.

(2) Put

\[
Z = \{ x \in X \mid f(x) \leq f(u) - \varepsilon d(u, x) \}. \quad (2.25)
\]

Then \(Z \) is nonempty and complete. Since \(\varepsilon d(u, x) \) is a quasi metric, as in the proof of (1), we have that there exists \(v \in Z \) such that \(f(w) > f(v) - \varepsilon d(v, w) \) for every \(w \in X \) with \(w \neq v \). Since \(v \in Z \), we have \(f(v) \leq f(u) - \varepsilon d(u, v) \leq f(u) \) and

\[
d(u, v) \leq \frac{1}{\varepsilon} \left[f(u) - f(v) \right] \leq \frac{1}{\varepsilon} \left[f(u) - \inf_{x \in X} f(x) \right] \leq \frac{1}{\varepsilon} \cdot \varepsilon = 1. \quad (2.26)
\]

This completes the proof of (2).

Remark 2.10. Theorem 2.9 is a generalization of Ekeland’s \(\varepsilon \)-variational principle in [3].

Acknowledgment. This work was supported by KOSEF research project No. 2001-1-10100-005-2.

References

Jeong Sheok Ume: Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea

E-mail address: jsume@sarim.changwon.ac.kr
Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk