FINITE AG-GROUPOID WITH LEFT IDENTITY AND LEFT ZERO

QAISSER MUSHTAQ and M. S. KAMRAN

(Received 3 October 2000)

ABSTRACT. A groupoid G whose elements satisfy the left invertive law: $(ab)c = (cb)a$ is known as Abel-Grassman's groupoid (AG-groupoid). It is a nonassociative algebraic structure midway between a groupoid and a commutative semigroup. In this note, we show that if G is a finite AG-groupoid with a left zero then, under certain conditions, G without the left zero element is a commutative group.

2000 Mathematics Subject Classification. 20N99.

1. Preliminaries. An Abel-Grassman's groupoid [6], abbreviated as AG-groupoid, is a groupoid G whose elements satisfy the left invertive law: $(ab)c = (cb)a$. It is also called a left almost semigroup [2, 3, 4, 5]. In [1], the same structure is called left invertive groupoid. In this note we call it AG-groupoid.

It is a nonassociative algebraic structure midway between a groupoid and a commutative semigroup. The structure is medial [5], that is, $(ab)(cd) = (ac)(bd)$ for all $a, b, c, d \in G$. It has been shown in [5] that if an AG-groupoid contains a left identity then it is unique. It has been proved also that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element. An element a_0 of an AG-groupoid G is called a left (right) zero if $a_0a = a_0$ $(aa_0 = a_0)$ for all $a \in G$.

Let $a, b, c,$ and d belong to an AG-groupoid with left identity and $ab = cd$. Then it has been shown in [5] that $ba = dc$.

An element a^{-1} of an AG-groupoid with left identity e is called a left inverse if $a^{-1}a = e$. It has been shown in [5] that if a^{-1} is a left inverse of a then it is unique and is also the right inverse of a.

If for all a, b, c in an AG-groupoid G, $ab = ac$ implies that $b = c$, then G is known as left cancellative. Similarly, if $ba = ca$, implies that $b = c$, then G is called right cancellative. It is known [5] that every left cancellative AG-groupoid is right cancellative but the converse is not true. However, every right cancellative AG-groupoid with left identity is left cancellative.

In this note, we show that if G is a finite AG-groupoid with left identity and a left zero a_0, under certain conditions $G \{a_0\}$ is a commutative group without a left zero.

2. Results. We need the following theorem from [4] for our main result.

Theorem 2.1 [4]. A cancellative AG-groupoid G is a commutative semigroup if $a(bc) = (cb)a$ for all $a, b, c \in G$.

We now state and prove our main result.

Theorem 2.2. Let \((G, \circ)\) be a finite AG-groupoid with at least two elements. Suppose that it contains a left identity and a left zero \(a_0\). Then \(G^0 = G \setminus \{a_0\}\) is a commutative group under the binary operation \(\circ\) provided there is another binary operation \(\ast\) such that

(i) \((G, \ast)\) is an AG-groupoid with left identity and left inverses,

(ii) \(a_0 \ast a = a\), for all \(a \in G\),

(iii) \((a \ast b) \circ c = (a \circ c) \ast (b \circ c)\), for all \(a, b, c \in G\),

(iv) \(a \circ b = a_0\) implies that either \(a = a_0\) or \(b = a_0\) for all \(a, b \in G\),

(v) \(a \circ (b \circ c) = (c \circ b) \circ a\), for all \(a, b, c \in G\).

Proof. Suppose that \(G = \{a_0, a_1, \ldots, a_m\}\), where \(m\) is a positive integer, is an AG-groupoid with left identity under the binary operation \(\circ\). Let \(e\) be the identity element of \(G\). It is certainly different from \(a_0\) because of (ii) and because \(a_0\) is the left zero under \(\ast\). The left invertive law together with (iv) implies that \((a \circ a_0) \circ e = (e \circ a_0) \circ a = a_0 \circ a = a_0\), where \(e \neq a_0\). That is,

\[
a_0 \circ a = a \circ a_0 = a_0. \tag{2.1}
\]

Now consider the subset \(G^0\) of \(G\) which is obtained from it by deleting \(a_0\), so that \(G^0 = \{a_i : i = 1, 2, \ldots, m\}\). In view of the facts that \(a_0\) is a zero under the binary operation \(\circ\) and it is the left identity under \(\ast\) and that \((G, \circ)\) is a finite AG-groupoid with left identity. \((G^0, \circ)\) is also a finite AG-groupoid with left identity having the same \(e\) as the left identity in which all elements are distinct.

We now examine whether an element \(a\) of \(G^0\) has an inverse in \(G^0\) under \(\circ\) or not. We construct a set \(H_k = \{a_k \circ a_1, a_k \circ a_2, \ldots, a_k \circ a_m\}\), where \(a_k \neq a_0\). If \(a_k = a_0\), then because \(a_0\) is a left zero in \(G\) under \(\circ\) and the left identity under \(\ast\), the ultimate form of the set \(H_k\) will be \(\{a_0\}\). Therefore it validates our supposition that \(a_k \neq a_0\).

We assert that \(H_k\) contains \(m\) elements. Suppose otherwise and let

\[
a_k \circ a_r = a_k \circ a_s, \tag{2.2}
\]

for some \(r, s = 1, 2, \ldots, m\) and \(r \neq s\). Since \(H_k\) is an AG-groupoid with left identity under \(\circ\), therefore (2.2) implies that

\[
a_r \circ a_k = a_s \circ a_k, \tag{2.3}
\]

for some \(r, s = 1, 2, \ldots, m\) and \(r \neq s\). Consider now the element \((a_s \ast a_r^{-1}) \circ a_k\), which is certainly an element of \(G\), where \(a_r^{-1}\) is the left inverse of \(a_r\) in \(G\) with respect to \(\ast\). Now,

\[
(a_s \ast a_r^{-1}) \circ a_k = (a_s \circ a_k) \ast (a_r^{-1} \circ a_k) = (a_r \circ a_k) \ast (a_r^{-1} \circ a_k) = (a_r \ast a_r^{-1}) \circ a_k = a_0 \circ a_k = a_0. \tag{2.4}
\]

Because of (iii), equation (2.3) and the facts that \(a_r^{-1}\) is the inverse of \(a_r\) under \(\ast\). Thus \((a_s \ast a_r^{-1}) \circ a_k = a_0\). Since \(a_k \neq a_0\), therefore because of (iv), \(a_s \ast a_r^{-1} = a_0\). Next \((a_s \ast a_r^{-1}) \circ a_r = a_0 \ast a_r\) implies that \((a_s \ast a_r^{-1}) \circ a_r = a_r\) because \(a_0\) is the left identity in \(G\) under \(\ast\). Hence, \(a_r = (a_s \ast a_r^{-1}) \ast a_r = (a_r \ast a_r^{-1}) \ast a_s = a_0 \ast a_s = a_s\), that is, \(a_r = a_s\). Since \(|H_k| = m\), therefore the result \(a_r = a_s\) contradicts our assumption; thus
proving that \(H_k\) contains distinct elements. Since \(H_k\) is contained in \(G^0\) and \(|G^0| = m\) we have \(H_k = G^0\).

Also, since \(G^0\) is an AG-groupoid under \((\circ)\) with the left identity \(e\), so is \(H_k\) and hence \(H_k\) contains the left identity \(e\). So, \(e\) will be of the form \(a_i \circ a_j\), that is, \(e = a_i \circ a_j\) implying that \(a_i\) is the left inverse of \(a_j\) under the binary operation \((\circ)\). But in an AG-groupoid with left identity, if it contains left inverses, every left inverse is a right inverse. Thus \(a_j\) is the right inverse of \(a_j\) under \((\circ)\).

Since \(k = 1, 2, \ldots, m\) has been chosen arbitrarily, we have shown that \(G^0\) is an AG-groupoid with left identity and inverses under the binary operation \((\circ)\).

If \(a_i, a_j, a_k \in G^0\) such that \(a_i \circ a_k = a_j \circ a_k\), then \((a_i \circ a_k) \circ a_k^{-1} = (a_j \circ a_k) \circ a_k^{-1}\) implies that \((a_i^{-1} \circ a_k) \circ a_i = (a_j^{-1} \circ a_k) \circ a_j\) and so \(a_i = a_j\). Thus \(G^0\) is right cancellative under \((\circ)\). But \(G^0\) being right cancellative under \((\circ)\), is left cancellative also, therefore \(G^0\) is cancellative. Since \(G^0\) is cancellative whose elements satisfy condition (v), therefore by applying Theorem 2.1, we conclude that \(G^0\) is a commutative group under \((\circ)\).

\[\Box\]

Corollary 2.3. If \((G, \circ)\) is a finite AG-groupoid with left identity and a left zero \(a_0\), then \((G \setminus \{a_0\}, \circ)\) is a cancellative AG-groupoid with left identity and inverses provided there is another binary operation \((\ast)\) such that

1. \((G, \ast)\) is an AG-groupoid with left identity and left inverses,
2. \(a_0 \ast a = a\), for all \(a \in G\),
3. \((a \ast b) \ast c = (a \circ c) \ast (b \circ c)\), for all \(a, b, c \in G\),
4. \(a \circ b = a_0\) implies that either \(a = a_0\) or \(b = a_0\) for all \(a, b \in G\).

Proof. The proof is analogous to the proof of Theorem 2.2. \(\Box\)

Acknowledgement. The authors are grateful to the referee for his invaluable suggestions.

References

Qaiser Mushtaq: Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan

E-mail address: qmushtaq@apollo.net.pk

M. S. Kamran: Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan
Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk