SYMMETRIC DUALITY FOR A CLASS OF MULTIOBJECTIVE PROGRAMMING

XINMIN YANG, SHOUYANG WANG, and DUAN LI

(Received 9 July 1998 and in revised form 6 November 1998)

ABSTRACT. We formulate a pair of symmetric dual nondifferentiable multiobjective programming and establish appropriate duality theorems. We also show that differentiable and nondifferentiable analogues of several pairs of symmetric dual problems can be obtained as special cases of our general symmetric programs.

Keywords and phrases. Symmetric duality, multiobjective, nondifferentiable, pseudo-convexity.

2000 Mathematics Subject Classification. Primary 90C29, 90C46.

1. Introduction. The concept of symmetric dual programs, in which the dual of the dual equals the primal, was introduced and developed in, e.g., [2, 4, 5]. Recently, Chandra, Craven, and Mond [1] formulated a pair of symmetric dual programs with a square root term. Weir and Mond [7] discussed symmetric duality in multiobjective programming. Mond, Husain, and Prasad gave symmetric duality result for nondifferentiable multiobjective programs in [6]. In this paper, a pair of symmetric dual nondifferentiable multiobjective programming problems is formulated and appropriate duality theorems are established under suitable generalized invexity assumptions. These results include duality results for multiobjective programs given in [6, 7] as special cases.

2. Notation and preliminaries. The following conventions for vectors in \mathbb{R}^n will be used:

- $x > y$ if and only if $x_i > y_i$, $i = 1, 2, 3, \ldots, n$;
- $x \geq y$ if and only if $x_i \geq y_i$, $i = 1, 2, 3, \ldots, n$;
- $x \geq y$ if and only if $x_i \geq y_i$, $i = 1, 2, 3, \ldots, n$, but $x \neq y$;
- $x \not\geq y$ is the negation of $x \geq y$.

If F is a twice differentiable function from $\mathbb{R}^n \times \mathbb{R}^m$ to \mathbb{R}, then $\nabla_x F$ and $\nabla_y F$ denote gradient (column) vectors of F with respect to x and y, respectively, and $\nabla_{y,x} F$ and $\nabla_{y,x} F$ denote the ($m \times m$) and ($m \times n$) matrices of second-order partial derivatives, respectively.

If F is a twice differentiable function from $\mathbb{R}^n \times \mathbb{R}^m$ to \mathbb{R}^k, then $\nabla_x F$ and $\nabla_y F$ denote, respectively, the ($n \times k$) and ($m \times k$) matrices of first-order partial derivatives.

Let C be a compact convex set in \mathbb{R}^n. The support function of C is defined by

$$s(x \mid C) = \max \{x^T y, y \in C\}. \quad (2.1)$$
A support function, being convex and everywhere finite, has a subdifferential in the sense of convex analysis, that is, there exists \(z \) such that \(s(y | C) \geq s(x | C) + z^T(y - x) \) for all \(x \). The subdifferential of \(s(x | C) \) is given by

\[
\partial s(x | C) = \{z \in C : z^T x = s(x | C)\}.
\]

(2.2)

We also require the concept of a normal cone. For any set \(S \) the normal cone to \(S \) at a point \(x \in S \) is defined by

\[
N_S(x) = \{y : y^T(z - x) \leq 0 \text{ } \forall z \in S\}.
\]

(2.3)

There is a relationship between normal cones and support functions of a compact convex set \(C \), namely, \(y \) is in \(N_C(x) \) if and only if \(s(y | C) = x^T y \) or equivalently, \(x \) is in the subdifferential of \(s \) at \(y \).

Consider the multiple objective programming problem:

\[
\min f(x) \text{ subject to } x \in X,
\]

where \(f : \mathbb{R}^n \rightarrow \mathbb{R}^k \) and \(X \subset \mathbb{R}^n \).

A feasible point \(x_0 \) is said to be an efficient solution of (2.4) if for any feasible \(x \),

\[
f_i(x_0) \geq f_i(x) \quad \forall i = 1, 2, \ldots, k
\]

implies

\[
f_i(x_0) = f_i(x) \quad \forall i = 1, 2, \ldots, k.
\]

(2.6)

A feasible point \(x \) is said to be properly efficient (see [6]) if it is efficient for (2.4) and if there exists a scalar \(M > 0 \) such that, for each \(i \),

\[
f_i(x_0) - f_i(x) \leq M (f_j(x) - f_j(x_0))
\]

for some \(j \) such that \(f_j(x) > f_j(x_0) \) whenever \(x \) is feasible for (2.4) and \(f_i(x) < f_i(x_0) \).

A feasible point \(x_0 \) is said to be a weak efficient solution of (2.4) if there exists no other feasible point \(x \) for which \(f(x_0) > f(x) \). If a feasible point \(x_0 \) is efficient, then it is clear that it is also a weak efficient.

Definition 2.1. A differentiable numerical function \(\psi \) defined on a set \(C \subset \mathbb{R}^n \) is said to be \(\eta \)-convex at \(\hat{x} \in C \) if there exists a function \(\eta(x, \hat{x}) \) defined on \(C \times C \) such that

\[
\psi(x) - \psi(\hat{x}) \geq \eta(x, \hat{x})^T \nabla \psi(\hat{x}) \quad \forall x \in C.
\]

(2.7)

If \(-\psi \) is \(\eta \)-convex at \(\hat{x} \in C \), then \(\psi \) is said to be \(\eta \)-concave at \(\hat{x} \in C \).

Definition 2.2. A differentiable numerical function \(\psi \) defined on a set \(C \subset \mathbb{R}^n \) is said to be \(\eta \)-pseudoconvex at \(\hat{x} \in C \) if there exists a function \(\eta(x, \hat{x}) \) defined on \(C \times C \) such that

\[
\eta(x, \hat{x})^T \nabla \psi(\hat{x}) \geq 0 \quad \rightarrow \quad \psi(x) \geq \psi(\hat{x}) \quad \forall x \in C.
\]

(2.8)

If \(-\psi \) is \(\eta \)-pseudoconvex at \(\hat{x} \in C \), then \(\psi \) is said to be \(\eta \)-pseudoconcave at \(\hat{x} \in C \).
3. Symmetric duality. Consider the following pair of symmetric dual nondifferentiable multiobjective programs.

Primal (VP),

\[
\begin{align*}
\text{minimize} \quad & \left(f_1(x, y) + s(x \mid C_1) - y^T z_1, \ldots, f_k(x, y) + s(x \mid C_k) - y^T z_k \right) \\
\text{subject to} \quad & (1) \quad \sum_{i=1}^{k} \lambda_i (\nabla_y f_i(x, y) - z_i) \leq 0, \\
& (2) \quad y^T \sum_{i=1}^{k} \lambda_i (\nabla_y f_i(x, y) - z_i) \geq 0, \\
& (3) \quad z_i \in D_i, \quad 1 \leq i \leq k, \\
& (4) \quad \lambda > 0, \quad \lambda^T e = 1, \quad x \geq 0.
\end{align*}
\]

Dual (VD),

\[
\begin{align*}
\text{maximize} \quad & \left(f_1(u, v) - s(v \mid D_1) + u^T w_1, \ldots, f_k(u, v) - s(v \mid D_k) + u^T w_k \right) \\
\text{subject to} \quad & (5) \quad \sum_{i=1}^{k} \lambda_i (\nabla_u f_i(u, v) + w_i) \geq 0, \\
& (6) \quad u^T \sum_{i=1}^{k} \lambda_i (\nabla_u f_i(u, v) + w_i) \leq 0, \\
& (7) \quad w_i \in C_i, \quad 1 \leq i \leq k, \\
& (8) \quad \lambda > 0, \quad \lambda^T e = 1, \quad v \geq 0.
\end{align*}
\]

Here \(e(1, 1, \ldots, 1)^T \in \mathbb{R}^k; f_i, \ i = 1, 2, \ldots, k, \) are twice differentiable functions from \(\mathbb{R}^n \times \mathbb{R}^m \) into \(\mathbb{R} \). \(C_i, \ i = 1, 2, \ldots, k, \) are compact convex sets in \(\mathbb{R}^n \), and \(D_i, \ i = 1, 2, \ldots, k, \) are compact convex sets in \(\mathbb{R}^m \).

Now we establish weak and strong duality theorems between (VP) and (VD).

Theorem 3.1 (weak duality). Let \((x, y, \lambda, z_1, z_2, \ldots, z_k)\) be feasible for (VP) and let \((u, v, \lambda, w_1, w_2, \ldots, w_k)\) be feasible for (VD). Let

\[
\sum_{i=1}^{k} \lambda_i (f_i(x, \cdot) + \cdot^T z_i) \text{ be } \eta_1 \text{-pseudoconvex at } u
\]

and let

\[
\sum_{i=1}^{k} \lambda_i (f_i(x, \cdot) - \cdot^T z_i) \text{ be } \eta_2 \text{-pseudoconcave at } v.
\]

Assume that \(\eta_1(x, u) + u \geq 0, \ \eta_2(v, y) + y \geq 0. \) Then the following cannot hold:

\[
\begin{align*}
& f_i(x, y) + s(x \mid C_i) - y^T z_i \leq f_i(u, v) - s(v \mid D_i) + u^T w_i \quad \forall i \in \{1, 2, \ldots, k\}, \\
& f_j(x, y) + s(x \mid C_j) - y^T z_j < f_j(u, v) - s(v \mid D_j) + u^T w_j \quad \text{for some } j.
\end{align*}
\]

Proof. From \(\eta_1(x, u) + u \geq 0, \) (5), and (6) we have

\[
\eta_1(x, u)^T \sum_{i=1}^{k} \lambda_i (\nabla_u f_i(u, v) + w_i) \geq 0.
\]

Since \(\sum_{i=1}^{k} \lambda_i (f_i(\cdot, v) + \cdot^T w_i) \) is \(\eta_1 \)-pseudoconvex at \(u \) it follows that

\[
\sum_{i=1}^{k} \lambda_i (f_i(x, v) + x^T w_i) \geq \sum_{i=1}^{k} \lambda_i (f_i(u, v) + u^T w_i).
\]
Since $x^T w_i \leq s(x \mid C_i)$, $1 \leq i \leq k$, and (7), then
\begin{equation}
\sum_{i=1}^{k} \lambda_i f_i(x,v) \geq \sum_{i=1}^{k} \lambda_i f_i(u,v) + u^T w_i - s(x \mid C_i). \tag{3.9}
\end{equation}

From $\eta_2(v,y) + y \geq 0$, (1), and (2) we have
\begin{equation}
\eta_2(v,y)^T \sum_{i=1}^{k} \lambda_i (\nabla_y f_i(x,y) - z_i) \leq 0. \tag{3.10}
\end{equation}

The η_2-pseudoconcavity assumption of $\sum_{i=1}^{k} \lambda_i (f_i(x,\cdot) - (\cdot)^T z_i)$ implies
\begin{equation}
\sum_{i=1}^{k} \lambda_i (f_i(x,v) - v^T z_i) \leq \sum_{i=1}^{k} \lambda_i (f_i(x,y) - y^T z_i). \tag{3.11}
\end{equation}

Since $v^T z_i \leq s(v \mid D_i)$, $1 \leq i \leq k$, and (4), then
\begin{equation}
\sum_{i=1}^{k} \lambda_i [f_i(x,v) - v^T z_i] \leq \sum_{i=1}^{k} \lambda_i [f_i(x,y) + s(v \mid D_i) - y^T z_i]. \tag{3.12}
\end{equation}

Combining (8), (3.9), and (3.12) yields the conclusion that (3.5) and (3.6) do not hold.

Theorem 3.2 (weak duality). Let $(x,y,\lambda,z_1,z_2,\ldots,z_k)$ be feasible for (VP) and $(u,v,\lambda,w_1,w_2,\ldots,w_k)$ be feasible for (VD). Let for all $i \in \{1,2,\ldots,k\}$, $f_i(\cdot,v) + (\cdot)^T w_i$ and $-f_i(x,\cdot) + (\cdot)^T z_i$ are η_1-convex for fixed v and η_2-convex for fixed x, respectively. Let $\eta_1(x,u) + u \geq 0$, $\eta_2(v,y) + y \geq 0$. Then the following cannot hold:
\begin{equation}
\begin{align*}
f_i(x,y) + s(x \mid C_i) - y^T z_i &\leq f_i(u,v) - s(v \mid D_i) + u^T w_i \quad \forall i \in \{1,2,\ldots,k\}; \\
f_j(x,y) + s(x \mid C_j) - y^T z_j &< f_j(u,v) - s(v \mid D_j) + u^T w_j \quad \text{for some } j. \tag{3.13}
\end{align*}
\end{equation}

Proof. Since $f_i(\cdot,v) + (\cdot)^T w_i$ is η_1-convex for fixed v ($1 \leq i \leq k$), we have
\begin{equation}
[f_i(x,v) + x^T w_i] - [f_i(u,v) + u^T w_i] \geq \eta_1(x,u)^T [\nabla_u f_i(u,v) + w_i], \quad 1 \leq i \leq k. \tag{3.14}
\end{equation}

Since $\lambda > 0$, then
\begin{equation}
\sum_{i=1}^{k} \lambda_i [f_i(x,v) + x^T w_i] - \sum_{i=1}^{k} \lambda_i [f_i(u,v) + u^T w_i] \geq \eta_1(x,u)^T \left\{ \sum_{i=1}^{k} \lambda_i [\nabla_u f_i(u,v) + w_i] \right\}. \tag{3.15}
\end{equation}

Since $-f_i(x,\cdot) + (\cdot)^T z_i$ is η_2-convex for fixed x ($1 \leq i \leq k$), we have
\begin{equation}
[f_i(x,v) - v^T z_i] - [f_i(x,y) - y^T z_i] \leq \eta_2(v,y)^T [\nabla_y f_i(x,y) - z_i], \quad 1 \leq i \leq k. \tag{3.16}
\end{equation}
Since \(\lambda > 0 \) it follows that
\[
\sum_{i=1}^{k} \lambda_i [f_i(x, v) + v^T z_i] - \sum_{i=1}^{k} \lambda_i [f_i(x, y) + y^T z_i] \leq \eta_2(v, y)^T \left\{ \sum_{i=1}^{k} \lambda_i [\nabla_y f_i(x, y) - z_i] \right\}.
\]
(3.17)

Now from \(\eta_1(x, u) + u \geq 0, (5), \) and (6), we have
\[
\eta_1(x, u)^T \left\{ \sum_{i=1}^{k} \lambda_i [\nabla_u f_i(u, v) + w_i] \right\} \geq 0.
\]
(3.18)

From (3.15), (3.18), and \(x^T w_i \leq s(x \mid C_i), \ i = 1, 2, \ldots, k; \) we obtain
\[
\sum_{i=1}^{k} \lambda_i [f_i(x, v)] \geq \sum_{i=1}^{k} \lambda_i [f_i(u, v) - s(x \mid C_i) + u^T w_i].
\]
(3.19)

By \(\eta_2(v, y) + y \geq 0, (2), \) and (3), we have
\[
\eta_2(v, y)^T \left\{ \sum_{i=1}^{k} [\nabla_y f_i(x, y) - z_i] \right\} \leq 0.
\]
(3.20)

From (3.17), (3.20), and \(v^T z_i \leq s(v \mid D_i), \ i = 1, 2, \ldots, k; \) we obtain
\[
\sum_{i=1}^{k} \lambda_i [f_i(x, v)] \leq \sum_{i=1}^{k} \lambda_i [f_i(x, y) - y^T z_i + s(v \mid D_i)].
\]
(3.21)

The proof now follows along similar lines as in Theorem 3.1. \(\square \)

Theorem 3.3 (strong duality). Let \((x_0, y_0, \lambda^0, z_1^0, z_2^0, \ldots, z_k^0) \) be a properly efficient solution for (VP) and fix \(\lambda = \lambda^0 \) in (VD), and let suppositions of Theorem 3.1 be fulfilled. Assume that

(i) the set
\[
\sum_{i=1}^{k} \lambda_i^0 [\nabla_y f_i(x_0, y_0)]
\]
(3.22)
is positive or negative definite

(ii) and the set
\[
\{\nabla_y f_i(x_0, y_0) - z_i^0, \ i = 1, 2, \ldots, k\}
\]
(3.23)
is linearly independent. Then there exist \(w_i^0 \in \mathbb{R}^n, \ i = 1, 2, \ldots, k \) such that \((x_0, y_0, \lambda^0, w_1^0, w_2^0, \ldots, w_k^0) \) is a properly efficient solution of (VD).

Proof. Since \((x_0, y_0, \lambda^0, w_1^0, w_2^0, \ldots, w_k^0) \) is a properly efficient solution of (VP), then it is a weakly efficient solution. Hence there exists \(\alpha \in \mathbb{R}^k, \beta \in \mathbb{R}^k, s \in \mathbb{R}^k, \gamma \in \mathbb{R}^k, \mu \in \mathbb{R}^k \) and \(\eta \in \mathbb{R} \) not all zero and \(w_i \in \mathbb{R}^n (1 \leq i \leq k) \) such that the following Fritz
John optimality conditions [3] are satisfied at \((x_0, y_0, \lambda^0, z_1^0, z_2^0, \ldots, z_k^0)\),

\[
\sum_{i=1}^{k} \alpha_i (\nabla_x f_i + w_i^0) + (\beta - \eta y_0)^T \sum_{i=1}^{k} \lambda_i (\nabla_y x f_i) = s, \tag{3.24}
\]

\[
\forall i \in \{1, 2, \ldots, k\}, \quad w_i^0 \in C_i, \tag{3.25}
\]

\[
\forall i \in \{1, 2, \ldots, k\}, \quad x_0^T w_i^0 = s \bigg| C_i, \tag{3.26}
\]

\[
\sum_{i=1}^{k} (\alpha_i - \eta \lambda_i^0) [\nabla_y f_i - z_i^0] + (\beta - \eta y_0)^T \sum_{i=1}^{k} \lambda_i^0 [\nabla_y y f_i] = 0, \tag{3.27}
\]

\[
\forall i \in \{1, 2, \ldots, k\}, \quad (\beta - \eta y_0)^T [\nabla_y f_i - z_i^0] - \mu_i = 0, \tag{3.28}
\]

\[
\forall i \in \{1, 2, \ldots, k\}, \quad \alpha_i y_0 - (\beta - \eta y_0)^T \lambda^0 \in N_{D_i}(z_i^0), \tag{3.29}
\]

\[
\beta^T \sum_{i=1}^{k} \lambda_i^0 (\nabla_y f_i - z_i^0) = 0, \tag{3.30}
\]

\[
\eta y_0^T \sum_{i=1}^{k} \lambda_i^0 (\nabla_y f_i - z_i^0) = 0, \tag{3.31}
\]

\[
s^T x_0 = 0, \tag{3.32}
\]

\[
\mu^T \lambda^0 = 0, \tag{3.33}
\]

\[(\alpha, \beta, s, \mu, \eta) \geq 0, \tag{3.34}\]

\[(\alpha, \beta, s, \mu, \eta) \neq 0. \tag{3.35}\]

Since \(\lambda^0 > 0\) and \(\mu \geq 0\), (3.33) implies \(\mu = 0\). Consequently (3.28) yields

\[
(\beta - \eta y_0)^T (\nabla_y f_i - C_i w_i) = 0. \tag{3.36}
\]

Multiplying left-hand side of (3.27) by \((\beta - \eta y_0)^T\) and using (3.36), we have

\[
(\beta - \eta y_0)^T \left\{ \sum_{i=1}^{k} \lambda_i^0 [\nabla_y y f_i] \right\} (\beta - \eta y_0) = 0 \tag{3.37}
\]

which, in view of (i), yields

\[
\beta = \eta y_0. \tag{3.38}
\]

From (3.27) and (3.38), we have

\[
\sum_{i=1}^{k} (\alpha_i - \eta \lambda_i^0) [\nabla_y f_i - z_i^0] = 0. \tag{3.39}
\]

According to assumption (ii), equation (3.39) implies

\[
\alpha_i = \eta \lambda_i^0, \quad i = 1, 2, \ldots, k. \tag{3.40}
\]

If \(\eta = 0\), then \(\alpha_i = 0\), for \(i = 1, 2, \ldots, k\) and from (3.38), \(\beta = 0\). From (3.24), \(s = 0\). From (3.28), \(\mu_i = 0\), for \(i = 1, 2, \ldots, k\). Thus, we obtain \((\alpha, \beta, y, s, \mu, \eta) = 0\) which contradicts
SYMMETRIC DUALITY FOR A CLASS OF MULTIOBJECTIVE...

condition (3.35). Hence \(\eta > 0 \). From (3.40) and \(\lambda > 0 \), we have \(\alpha_i > 0 \), \(i = 1, 2, \ldots, k \). By (3.24), (3.38), and (3.40) we get

\[
\sum_{i=1}^{k} \lambda_i^0 (\nabla_x f_i + w_i) = \frac{s}{\eta} \geq 0.
\] (3.41)

By (3.34), (3.38), and \(\eta > 0 \) we have

\[
y_0 = \frac{\beta}{\eta} \geq 0.
\] (3.42)

From (3.32) and (3.41), it follows that

\[
x_0^T \sum_{i=1}^{k} \lambda_i^0 (\nabla_x f_i + w_i) = 0.
\] (3.43)

From (3.25), (3.41), (3.42), and (3.43), we know that \((x_0, y_0, \lambda_0, z_1^0, x_2^0, \ldots, z_k^0)\) is feasible for (VD).

Now from (3.29) and (3.38) we obtain

\[
y_0^T z_i^0 = s(y_0 | D_i), \quad i = 1, 2, \ldots, k.
\] (3.44)

Using (3.26) and (3.44) we get

\[
f_i(x_0, y_0) + s(x_0 | C_i) - y_0^T z_i^0 = f(x_0, y_0) + x_0^T z_i^0 - s(y_0 | D_i).
\] (3.45)

Thus, \((x_0, y_0, \lambda_0, w_1^0, w_2^0, \ldots, w_k^0)\) is feasible for (VD) and the objective values of (VP) and (VD) are equal.

We claim that \((x_0, y_0, \lambda_0, w_1^0, w_2^0, \ldots, w_k^0)\) is an efficient solution of (VD), for if it is not true, then there would exist \((u, v, \lambda_0, w_1, w_2, \ldots, w_k)\) feasible for (VD) such that

\[
\begin{align*}
f_i(u, v) + u^T w_i - s(v | D_i) &\geq f_i(x_0, y_0) + x_0^T w_i^0 - s(y_0 | D_i), \quad \forall i = 1, 2, \ldots, k; \\
f_j(u, v) + u^T w_j - s(v | D_j) &> f_j(x_0, y_0) + x_0^T w_j^0 - s(y_0 | D_j),
\end{align*}
\] (3.46)

for some \(j \in \{1, 2, \ldots, k\} \). Using equalities (3.26) and (3.44), a contradiction to Theorem 3.1 is obtained.

If \((x_0, y_0, \lambda_0, w_1^0, w_2^0, \ldots, w_k^0)\) is improperly efficient, then, for every scalar \(M > 0 \), there exists a feasible solution \((u, v, \lambda_0, w_1, w_2, \ldots, w_k)\) in (VD) and an index \(i \) such that

\[
\begin{align*}
f_i(u, v) + u^T w_i - s(v | D_i) - f_i(x_0, y_0) + x_0^T w_i^0 - s(y_0 | D_i) \\
&> M[f_j(x_0, y_0) + x_0^T w_j^0 - s(y_0 | D_j)] - f_j(u, v) + u^T w_j - s(v | D_j)
\end{align*}
\] (3.47)

for all \(j \) satisfying

\[
f_j(x_0, y_0) + x_0^T w_j^0 - s(y_0 | D_j) > f_j(u, v) + u^T w_j - s(v | D_j)
\] (3.48)
whenever
\[f_i(u, v) + u^T w_i - s(v | D_j) > f_i(x_0, y_0) + x_0^T w_i^0 - s(y_0 | D_1). \] (3.49)

Since \(x_0^T w_i^0 = s(x | C_i) \) and \(y_0^T z_i^0 = s(y_0 | D_i) \), \(i = 1, 2, \ldots, k \), it implies that
\[f_i(u, v) + u^T w_i - s(v | D_i) - f_i(x_0, y_0) + s(x | C_i) - y_0^T z_i^0 \] (3.50)

can be made arbitrarily large and hence for \(\lambda^0 \) with \(\lambda^0_i > 0 \), we have
\[\sum_{i=1}^{k} \lambda^0_i \{ f_i(u, v) + u^T w_i - s(v | D_i) \} > \sum_{i=1}^{k} \lambda^0_i \{ f_i(x_0, y_0) + s(x | C_i) - y_0^T z_i^0 \}, \] (3.51)

which contradicts weak duality (Theorem 3.1).

In a similar manner to that of Theorem 3.3 we can prove the following.

Theorem 3.4 (strong duality). Let \((x_0, y_0, \lambda^0, z_0^0, z_0^1, \ldots, z_0^k)\) be a properly efficient solution for \((VP)\) and fix \(\lambda = \lambda^0 \) in \((VD)\); and the assumptions of Theorem 3.2 are fulfilled. Assume that (i) and (ii) of Theorem 3.3 hold. Then there exist \(w_0^i \in \mathbb{R}^n \) \(1 \leq i \leq k \) such that \((x_0, y_0, \lambda^0, w_0^1, w_0^2, \ldots, w_0^k)\) is a properly efficient solution of \((VD)\).

4. Special cases. It is readily shown that \((x^TAx)^{1/2} = s(x | C)\), where \(C = \{ Ay, y^TAy \leq 1 \} \) and that this set \(C \) is compact and convex.

(i) If, for all \(i \in \{1, 2, \ldots, k\}, C_i = 0, \) and \(D_i = 0, \) then \((VP)\) and \((VD)\) reduce to programs studied by Weir and Mond [7].

(ii) If \((x^TBix)^{1/2} = s(x | C_i)\), where \(C_i = \{ B_iy, y^TB_iy \leq 1 \} \), \((x^TCix)^{1/2} = s(x | D_i)\), and \(D_i = \{ C_iy, y^TC_iy \leq 1 \} \), \(i = 1, 2, \ldots, k \); then programs \((VP)\) and \((VD)\) become a pair of symmetric dual nondifferentiable programs considered by Mond, Husain, and Prasad [6].

(iii) If, in \((FP)\) and \((FD)\), \(k = 1, \) \((x^TBix)^{1/2} = s(x | C_i)\), where \(C_i = \{ B_iy, y^TB_iy \leq 1 \} \), \((x^TCix)^{1/2} = s(x | D_i)\), where \(D_i = \{ C_iy, y^TC_iy \leq 1 \} \), then we obtain the symmetric dual problems of Chandra, Craven, and Mond [1].

Acknowledgement. This work is supported by the National Natural Sciences Foundation of China (Grant No. 19771092 and No. 19401040) and the Research Grants Council of Hong Kong (Grant No. CUHK 358/96p). The authors would like to thank the referees for valuable comments.

References

XINMIN YANG: DEPARTMENT OF MATHEMATICS, CHONGQING NORMAL UNIVERSITY, CHONGQING 400047, CHINA

SHOUYANG WANG: INSTITUTE OF SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES, BEIJING 100080, CHINA

DUAN LI: DEPARTMENT OF SYSTEM ENGINEERING AND ENGINEERING MANAGEMENT, CHINESE UNIVERSITY OF HONG KONG, SHATIN, N.T., HONG KONG
Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk