BIORTHOGONALITY CONDITION FOR AXISYMMETRIC STOKES FLOW IN SPHERICAL GEOMETRIES

S. A. KHURI

(Received 15 September 1997)

ABSTRACT. We derive the biorthogonality condition for axisymmetric Stokes flow in a region between two concentric spheres. This biorthogonality condition is a property satisfied by the eigenfunctions and adjoint eigenfunctions, which is needed to compute the coefficients of the eigenfunction expansion solution of the corresponding creeping flow problem.

Keywords and phrases. Eigenvalues, eigenfunctions, eigenfunction expansion, biorthogonality conditions, Stokes flow.

2000 Mathematics Subject Classification. Primary 76D07, 76D99, 35P10.

1. Introduction. Recently, the eigenfunction expansion method has been used extensively for solving problems of Stokes flow. The method leads to the development of a set of eigenfunctions, adjoint eigenfunctions, biorthogonality conditions and an algorithm for the computation of the eigenfunction expansions. This technique was first introduced by Smith [10] in his solution of the biharmonic problem governing the bending of a semi-infinite strip clamped at its side and loaded at its top edge.

The biorthogonal series expansion method was also used by Joseph [2] in his study of the free surface on the round edge of a flowing liquid filling a torsion flow viscometer and by Joseph and Sturges [3] in the steady flow induced in a rectangular cavity by the uniform translation of a covering plate or belt. Similar biorthogonal eigenfunction expansions and biorthogonality conditions are required for the axisymmetric Stokes flow problems in a wedge shaped trench studied by Liu and Joseph [7], the axisymmetric Stokes flow in a cone studied by Liu and Joseph [8] and for the problem of Stokes flow in a trench between concentric cylinders studied by Yoo and Joseph [11].

Most recently, biorthogonality conditions were used by Khuri to solve Stokes flow in a sectorial cavity [5] and by Khuri and Wang for solving Stokes flow around a bend [6].

The previous references are just a small sample of problems arising in Stokes flow and elasticity which can be solved in biorthogonal series of eigenfunctions generated by separating variables. A list of several other problems is given in [4, 9].

In this paper, we derive the biorthogonality condition for axisymmetric Stokes flow in a spherical region by implementing a theorem proved by Khuri [5]. This biorthogonality condition is a property satisfied by the eigenfunctions and adjoint eigenfunctions, which is needed to compute the coefficients of the eigenfunction expansion solution of the corresponding creeping flow problem.
2. Biorthogonality conditions. We state a biorthogonality property satisfied by the eigenfunctions and adjoint eigenfunctions of the following fourth-order boundary value problem:

\[(P_0(r)y''(r))'' + (P_1(r;\alpha)y'(r))' + P_2(r;\alpha)y(r) = 0 \quad r \in [r_1, r_2]\]
(2.1)

The boundary conditions are given by

\[y(r_1) = y(r_2) = y'(r_1) = y'(r_2) = 0.\]
(2.2)

This biorthogonality condition, given in Theorem 2.1, which was proved by Khuri [5], gives the biorthogonality property for the boundary value problem given in equations (2.1) and (2.2) with certain restrictions imposed on the coefficients.

Theorem 2.1 (biorthogonality condition). Consider the boundary value problem given in (2.1) and (2.2), where \(P_0(r), P_1'(r;\alpha), P_2(r;\alpha)\) are continuous and \(P_0(r) \neq 0\) on \(r_1 \leq r \leq r_2\). \(P_1\) in equation (2.1) is a polynomial of degree at most \(i\) in the parameter \(\alpha\), in particular, let \(P_1(r;\alpha) = p_{11}(r)\alpha + p_{12}(r)\), and we require

\[p_{11}^2(r) - 4P_0(r)P_2(r;\alpha) = p_{31}(r)\alpha + p_{32}(r),\]
(2.3)

Then with \(P_n^*\) defined by

\[P_n^* = \int_{r_1}^{r_2} \begin{bmatrix} \phi_1^{(n)}(r) \\ \phi_2^{(n)}(r) \end{bmatrix} B(r) \begin{bmatrix} \phi_1^{(n)}(r) \\ \phi_2^{(n)}(r) \end{bmatrix} dr,\]
(2.4)

we have the following biorthogonality condition:

\[\int_{r_1}^{r_2} \begin{bmatrix} \phi_2^{(m)}(r) \\ \phi_1^{(m)}(r) \end{bmatrix} B(r) \begin{bmatrix} \phi_1^{(n)}(r) \\ \phi_2^{(n)}(r) \end{bmatrix} dr = P_n^* \delta_{mn},\]
(2.5)

where \(\delta_{mn}\) is the Kronecker’s delta,

\[B(r) = \begin{pmatrix} -\frac{1}{2} \frac{p_{11}(r)}{P_0(r)} & 0 \\ \frac{1}{2} P_1''(r) + \frac{1}{4} \frac{p_{31}(r)}{P_0(r)} & -\frac{1}{2} \frac{p_{11}(r)}{P_0(r)} \end{pmatrix}\]
(2.6)

with

\[\phi_1^{(n)}(r) = y_n(r),\]
\[\phi_2^{(n)}(r) = P_0(r)y_n''(r) + \frac{1}{2} P_1(r;\alpha_n)y_n(r).\]
(2.7)

Here \(y_i\) is an eigenfunction of equation (2.1) corresponding to the eigenvalue \(\alpha_i\). Assume the eigenvalues \(\alpha_i\) are simple.
3. Axisymmetric Stokes flow in spherical regions. In this section, the biorthogonality condition for the axisymmetrical creeping flow in a region between two concentric spheres is derived. The flow region is

\[\nu = \{ r, \theta : 0 < r_1 \leq r \leq r_2, -\theta_1 \leq \theta \leq \theta_1 \}. \]

(3.1)

The Stokes flow equation in spherical coordinates \((r, \theta, \phi)\) in \(\nu\) is given by

\[E^4 \Psi (r, \theta) = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} - \cot \theta \frac{\partial}{\partial \theta} \right) \Psi (r, \theta) = 0. \]

(3.2)

The velocity components in the \((r, \theta)\) direction in terms of the stream function are given by

\[v_r = -\frac{1}{r^2 \sin \theta} \frac{\partial \Psi}{\partial \theta}, \quad v_\theta = \frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial r}. \]

(3.3)

Requiring the velocity to vanish on \(r = r_1, r_2\), (3.3) gives

\[\Psi (r_1, \theta) = \Psi (r_2, \theta) = \frac{\partial \Psi}{\partial r} (r_1, \theta) = \frac{\partial \Psi}{\partial r} (r_2, \theta) = 0. \]

(3.4)

Separable solutions of (3.2) and (3.4) in the form

\[\Psi (r, \theta) \sim T (\cos \theta) y (r) \]

(3.5)

exist (see [1]) when \(y (r)\) satisfies the following equation:

\[y^{(4)} + \frac{2}{r^2} p (1 - p) y^{(2)} - \frac{4}{r^3} p (1 - p) y^{(4)} + \frac{p}{r^2} (1 - p) (2 + p) (3 - p) \frac{1}{r^4} y = 0 \]

(3.6)

and the boundary conditions

\[y' (r_1) = y' (r_2) = y'' (r_1) = y'' (r_2) = 0. \]

(3.7)

Seeking an eigenfunction solution in \(r\) direction it is necessary that the function \(T (\eta)\), where \(\eta = \cos \theta\) be required to satisfy the following equation:

\[(1 - \eta^2) T'' (\eta) - p (1 - p) T (\eta) = 0. \]

(3.8)

Equation (3.8) is Gegenbauer’s equation of degree \(-1/2\) where \(p\) could be complex. The two independent solutions of (3.8) are \(C_p^{1/2} (\eta)\) and \(D_p^{1/2} (\eta)\) that are termed as Gegenbauer functions of the first and second kind, respectively. Clearly, equation (3.6) can be written in the following form:

\[(y'')'' + 2 p (1 - p) \left(\frac{1}{r^2} y' \right)' + p (1 - p) (2 + p) (3 - p) \frac{1}{r^4} y = 0. \]

(3.9)

The hypothesis of Theorem 2.1 is satisfied when \(\alpha_n \neq \alpha_m\) with

\[P_0 (r) = 1; \quad P_1 (r; \alpha) = \frac{2}{r^2} \alpha; \quad P_2 (r; \alpha) = \frac{1}{r^4} \alpha (\alpha + 6), \]

(3.10)
where
\[\alpha = p(1 - p). \]
(3.11)

Since
\[P_1^2(r; \alpha) - 4P_0(r)P_2(r; \alpha) = -\frac{24}{r^4} \alpha \]
(3.12)
so
\[p_{31}(r) = -\frac{24}{r^4}; \quad p_{32}(r) = 0. \]
(3.13)
Clearly,
\[p_{11}(r) = \frac{2}{r^2}; \quad p_{12}(r) = 0. \]
(3.14)
Thus using Theorem 2.1. The biorthogonality condition is given by
\[\int_{r_1}^{r_2} -\frac{1}{r^2} \left[\psi_1^{(m)}(r), \psi_2^{(m)}(r) \right] \begin{bmatrix} \phi_1^{(n)}(r) \\ \phi_2^{(n)}(r) \end{bmatrix} \, dr = \frac{P_n^*}{P_n} \delta_{mn}, \quad p_n(1 - p_n) \neq p_m(1 - p_m) \]
(3.15)
upon using
\[B(r) = -\frac{1}{r^2} I_{2 \times 2} = \begin{pmatrix} -\frac{1}{r^2} & 0 \\ 0 & -\frac{1}{r^2} \end{pmatrix}, \]
(3.16)
where \(I_{2 \times 2} \) is the identity matrix. The eigenfunctions satisfy
\[\phi_1^{(n)}(r) = y_n(r), \quad \phi_2^{(n)}(r) = y_n''(r) + \frac{\alpha_n}{r^2} y_n(r) \]
(3.17)
and the adjoint eigenfunctions satisfy
\[\psi_1^{(m)}(r) = y_m''(r) + \frac{\alpha_m}{r^2} y_m(r), \quad \psi_2^{(m)}(r) = y_m(r), \]
(3.18)
where
\[\alpha_n = p_n(1 - p_n). \]
(3.19)

REFERENCES
BIORTHOGONALITY CONDITION FOR AXISYMMETRIC STOKES ...

Khuri: Department of Computer Science, Mathematics and Statistics, American University of Sharjah, P.O. Box 26666-739, Sharjah, United Arab Emirates.

E-mail address: skhouri@aus.ac.ae
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru