SUBORDINATION PROPERTIES OF p-VALENT FUNCTIONS DEFINED BY INTEGRAL OPERATORS

SAEID SHAMS, S. R. KULKARNI, AND JAY M. JAHANGIRI

Received 20 June 2005; Revised 14 November 2005; Accepted 28 November 2005

By applying certain integral operators to p-valent functions we define a comprehensive family of analytic functions. The subordinations properties of this family is studied, which in certain special cases yield some of the previously obtained results.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

For the natural numbers p let $A(p)$ denote the class of functions of the form $f(z) = z^p + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} + \cdots$, which are analytic in the open unit disk $U = \{ z : |z| < 1 \}$. For $f(z) \in A(p)$ we define

$$I^\sigma f(z) = \frac{(p+1)^\sigma}{z^\Gamma(\sigma)} \int_0^z \left(\log \frac{z}{t} \right)^{\sigma-1} f(t) dt = z^p + \sum_{n=p+1}^{\infty} \frac{(p+1)^{\sigma}}{n+1} a_n z^n, \quad \sigma > 0. \quad (1.1)$$

Also, for $-1 \leq B < A \leq 1$ and $\lambda \geq 0$, let $\Omega^\sigma_p(A,B,\lambda)$ be the class of functions $f \in A(p)$ so that

$$\frac{\lambda}{p} \frac{I^{\sigma-1} f(z)}{z^p} + \frac{p - \lambda}{p} \frac{I^\sigma f(z)}{z^p} < \frac{1}{1+Bz}, \quad \lambda \geq 0, \quad (1.2)$$

where “≺” denotes the usual subordination. See [2].

The family $\Omega^\sigma_p(A,B,\lambda)$ is a comprehensive family containing various well-known as well as new classes of analytic functions. For example, for $\sigma = 0$ and $\lambda = p + 1$ we obtain the class $\Omega^0_p(A,B,p+1)$ studied by Patel and Mohanty [3] or for nonzero σ see Liu [1].

2. Main results

Our first theorem examines the containment properties of the family $\Omega^\sigma_p(A,B,\lambda)$.
2 \(p \)-valent functions

Theorem 2.1. For \(f \in A(p) \) suppose that \(f \in \Omega^p_\sigma(A,B,\lambda) \) and \(0 \leq \lambda \leq p(p+1) \). Then \(f \in \Omega^\sigma_p(A,B,0) \).

To prove our theorem we will need the following lemma which is due to Miller and Mocanu [2].

Lemma 2.2. Let \(g(z) \) be analytic and convex univalent in \(U \) and \(g(0) = 1 \). Also let \(p(z) \) be analytic in \(U \) with \(p(0) = 1 \). If \(p(z) + (zp'(z))/\gamma < g(z) \), where \(\gamma \neq 0 \) and Re \(\gamma \geq 0 \), then \(p(z) < \gamma z^{-\gamma} \int_0^z t^{\gamma-1} g(t) dt \).

Proof of Theorem 2.1. First, we note that

\[
(z(I^\sigma f(z)))' = (p+1)I^{\sigma-1}f(z) - I^\sigma f(z).
\] (2.1)

Setting \(p(z) = (I^\sigma f(z))/zp \) we also observe that

\[
\frac{(I^\sigma f(z))'}{pz^{p-1}} = p(z) + \frac{zp'(z)}{p},
\]

\[
\frac{I^{\sigma-1}f(z)}{z^p} = p(z) + \frac{zp'(z)}{p+1}.
\] (2.2)

Therefore, for \(f \in \Omega^\sigma_p(A,B,\lambda) \), we conclude that

\[
p(z) + \frac{\lambda}{p(p+1)}zp'(z) < \frac{1+Az}{1+Bz}.
\] (2.3)

Now from Lemma 2.2 for \(\gamma = p(p+1)/\lambda \) it follows that

\[
\frac{I^\sigma f(z)}{z^p} < \frac{p(p+1)}{\lambda}z^{-p(p+1)/\lambda} \int_0^z t^{p(p+1)/\lambda-1} \frac{1+At}{1+Bt} dt = q(z) < \frac{1+Az}{1+Bz}.
\] (2.4)

Thus \(f \in \Omega^\sigma_p(A,B,0) \). □

As a special case to Theorem 2.1, we obtain the following.

Corollary 2.3. Let \(f \in A(p) \). Then \((1/(p+1))[(zf'(z) + f(z))/z^p] < (1+Az)/(1+Bz) \), implies \(f(z)/z^p < (1+Az)/(1+Bz) \).

Theorem 2.4. For \(f \in A(p) \) suppose that \(f \in \Omega^\sigma_p(A,B,\lambda) \). If \(0 \leq \lambda \leq p(p+1) \), then

\[
\text{Re} \left(\frac{I^\sigma f(z)}{z^p} \right) \geq \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)/\lambda-1} \frac{1-Au}{1-Bu} du.
\] (2.5)

The result is sharp.

Proof. Set \(p(z) = I^\sigma f(z)/z^p \). Then, by Theorem 2.1, we have

\[
p(z) < \frac{p(p+1)}{\lambda}z^{-p(p+1)/\lambda} \int_0^z t^{p(p+1)/\lambda-1} \frac{1+At}{1+Bt} dt < \frac{1+Az}{1+Bz}.
\] (2.6)
This is equivalent to

\[
I_\sigma f(z) = \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)\lambda - 1} \frac{1 + uAw(z)}{1 + uBw(z)} du,
\]

(2.7)

where \(w(z) \) is analytic in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) in \(U \). Therefore

\[
\text{Re} \left(\frac{I_\sigma f(z)}{zp} \right) = \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)\lambda - 1} \text{Re} \left\{ \frac{1 + uAw(z)}{1 + uBw(z)} \right\} du
\]

\[
\geq \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)\lambda - 1} \frac{1 - Au}{1 - Bu} du.
\]

(2.8)

Therefore

\[
I_\sigma f(z) = \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)\lambda - 1} \frac{1 + Au}{1 + Bu} du,
\]

(2.9)

such that for this function we have

\[
\frac{\lambda}{p} I_\sigma^{-1} f(z) = \frac{p - \lambda}{p} I_\sigma f(z) = \frac{1 + Az}{1 + Bz}.
\]

(2.10)

Letting \(z \to -1 \) yields

\[
I_\sigma f(z) \rightarrow \frac{p(p+1)}{\lambda} \int_0^1 u^{p(p+1)\lambda - 1} \frac{1 - Au}{1 - Bu} du.
\]

(2.11)

\[\square \]

References

Saeid Shams: Department of Mathematics, University of Urmia, Urmia-57153, Iran
E-mail address: sa40shams@yahoo.com

S. R. Kulkarni: Department of Mathematics, Fergusson College, Pune-411004, India
E-mail address: kulkarni_ferg@yahoo.com

Jay M. Jahangiri: Department of Mathematical Sciences, Kent State University, Ohio, USA
E-mail address: jjahangi@kent.edu
Special Issue on
Time-Dependent Billiards

Call for Papers
This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>