Let \((u_n)\) be a sequence of real numbers, \(L\) an additive limitable method with some property, and \(\mathcal{U}\) and \(\mathcal{V}\) different spaces of sequences related to each other. We prove that if the classical control modulo of the oscillatory behavior of \((u_n)\) in \(\mathcal{U}\) is a Tauberian condition for \(L\), then the general control modulo of the oscillatory behavior of integer order \(m\) of \((u_n)\) in \(\mathcal{U}\) or \(\mathcal{V}\) is also a Tauberian condition for \(L\).

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, \(u_n = O(1)\) and \(u_n = o(1)\) denote \(O(1)\) as \(n \to \infty\) and \(o(1)\) as \(n \to \infty\), respectively. Let \(\mathcal{N}, \mathcal{B}, \mathcal{S}, \text{ and } \mathcal{M}\) denote the space of sequences converging to 0, bounded, slowly oscillating, and moderately oscillating, respectively.

The classical control modulo of the oscillatory behavior of \((u_n)\) is denoted by \(\omega_n^{(0)}(u) = n\Delta u_n\) and the general control modulo of the oscillatory behavior of order \(m\) of \((u_n)\) is defined by \(\omega_n^{(m)}(u) = \omega_n^{(m-1)}(u) - \sigma_n^{(1)}(\omega_n^{(m-1)}(u))\), where

\[
\Delta u_n = \begin{cases}
 u_n - u_{n-1}, & n \geq 1, \\
 u_0, & n = 0,
\end{cases} \quad \sigma_n^{(1)}(u) = \frac{1}{n+1} \sum_{k=0}^{n} u_k. \tag{1.1}
\]

Tauber [10] proved that if \((u_n)\) is Abel limitable and

\[(\omega_n^{(0)}(u)) \in \mathcal{N}, \tag{1.2}\]

then \((u_n)\) is convergent. The condition (1.2) on the sequence \((u_n)\) is called a Tauberian condition for Abel limitable method and the resulting theorem is called a Tauberian theorem.
2 Tauberian conditions for a general limitable method

Tauber [10] further proved that the condition
\[(\sigma_n^{(1)}(\omega_{0}(u))) \in \mathcal{N}\] (1.3)
is also a Tauberian condition. It was shown by Littlewood [6] that the condition (1.2) could be replaced by
\[\left(\omega_{n}^{(0)}(u)\right) \in \mathcal{B}.\] (1.4)

Hardy and Littlewood [5] improved Littlewood’s theorem replacing (1.4) by onesided boundedness of \(\left(\omega_{n}^{(0)}(u)\right)\).

Stanojević [9] reformulated the definition of slow oscillation given by Schmidt [8] in a more suitable form and then proved that the conditions (1.2) and (1.3) could be replaced by
\[\left(\omega_{n}^{(0)}(u)\right) \in \mathcal{F},\] (1.5)
\[\left(\sigma_n^{(1)}(\omega_{0}(u))\right) \in \mathcal{F},\] (1.6)
respectively.

A generalization of slow oscillation, moderate oscillation, was introduced by Stanojević and it was proved by Dik [4] that (1.5) could be replaced by
\[\left(\omega_{n}^{(0)}(u)\right) \in \mathcal{M},\] (1.7)
and (1.6) could not be replaced by
\[\left(\sigma_n^{(1)}(\omega_{0}(u))\right) \in \mathcal{M}.\] (1.8)

Recently, Çanak and Totur [3] have shown that for any nonnegative integer \(m \geq 1\),
\[\left(\omega_{n}^{(m)}(u)\right) \in \mathcal{M}\] (1.9)
is a Tauberian condition for Abel limitable method.

Meyer-König and Tietz [7] proved that if (1.2) is a Tauberian conditions for an additive and regular limitability method, then (1.3) is a Tauberian condition for \(L\). Çanak et al. [1] extended and generalized Meyer-König and Tietz’s [7] result and obtained the following theorems for an additive and \((C,1)\) regular method \(L\).

Theorem 1.1. If \(\left(\omega_{n}^{(0)}(u)\right) \in \mathcal{F}\) is a Tauberian condition for an additive and \((C,1)\) regular limitable method \(L\), then \(\left(\omega_{n}^{(1)}(u)\right) \in \mathcal{F}\) is a Tauberian condition for \(L\).

Theorem 1.2. If \(\left(\omega_{n}^{(0)}(u)\right) \in \mathcal{B}\) is a Tauberian condition for an additive and \((C,1)\) regular limitable method \(L\), then \(\left(\omega_{n}^{(1)}(u)\right) \in \mathcal{B}\) is a Tauberian condition for \(L\).

Let \(\mathcal{U}\) and \(\mathcal{V}\) be distinct spaces of sequences related to each other. In this paper, we prove that if the classical control modulo of the oscillatory behavior of \((u_n)\) in \(\mathcal{U}\) is a Tauberian condition for an additive and \((C,1)\) limitable method \(L\), then the general control modulo of the oscillatory behavior of integer order \(m\) of \((u_n)\) in \(\mathcal{U}\) or \(\mathcal{V}\) is also a Tauberian condition for \(L\).
2. Notations and definitions

Throughout this paper, let \(u = (u_n) \) be a sequence of real numbers. For each integer \(m \geq 0 \) and for all nonnegative integers \(n \) denote \(\sigma_n^{(m)}(u) \) by

\[
\sigma_n^{(m)}(u) = \begin{cases}
\frac{1}{n+1} \sum_{k=0}^{n} \sigma_k^{(m-1)}(u) = u_0 + \sum_{k=1}^{n} \frac{V_k^{(m-1)}(\Delta u)}{k}, & m \geq 1, \\
u_n, & m = 0,
\end{cases}
\tag{2.1}
\]

where

\[
V_n^{(m)}(\Delta u) = \begin{cases}
\sigma_n^{(1)}(V^{(m-1)}(\Delta u)), & m \geq 1, \\
\frac{1}{n+1} \sum_{k=0}^{n} k \Delta u_k, & m = 0.
\end{cases}
\tag{2.2}
\]

The identity

\[
u_n - \sigma_n^{(1)}(u) = V_n^{(0)}(\Delta u)
\tag{2.3}
\]

is well known and will be extensively used. We define inductively for each integer \(m \geq 1 \) and for all nonnegative integers \(n \),

\[
(n\Delta)_m u_n = n\Delta((n\Delta)_{m-1} u_n), \quad \text{where } (n\Delta)_0 u_n = u_n.
\tag{2.4}
\]

It is proved in [2] that for each integer \(m \geq 1 \),

\[
\omega_n^{(m)}(u) = (n\Delta)_m V_n^{(m-1)}(\Delta u).
\tag{2.5}
\]

Definition 2.1. A sequence \(u = (u_n) \) is Abel limitable to \(s \) if the limit \(\lim_{x \to 1^-} (1-x) \sum_{n=0}^{\infty} u_n x^n = s \).

Definition 2.2. A sequence \(u = (u_n) \) is \(L \)-limitable to \(s \) if \(L - \lim_n u_n = s \).

A limitation method \(L \) is called additive if \(L - \lim_n u_n = s \) and \(L - \lim_n v_n = t \) imply that \(L - \lim_n (u_n + v_n) = s + t \). A limitation method \(L \) is called regular if the \(L \)-limit of every convergent sequence is equal to its limit. \(L \) is called \((C,1)\) regular if \(L - \lim_n \sigma_n^{(1)}(u) = s \). It is clear that every regular limitable method is \((C,1)\) regular.

Definition 2.3. A sequence \(u = (u_n) \) is one-sidedly bounded if for some \(C \geq 0 \) and for each nonnegative integer \(n, u_n \geq -C \).

Definition 2.4. A sequence \(u = (u_n) \) is slowly oscillating [9] if

\[
\lim_{\lambda \to 1^+} \lim_{n} \max_{n+1 \leq k \leq \lfloor \lambda n \rfloor} \left| \sum_{j=n+1}^{k} \Delta u_j \right| = 0,
\tag{2.6}
\]

where \(\lfloor \lambda n \rfloor \) denotes the integer part of \(\lambda n \).
4 Tauberian conditions for a general limitable method

A sequence \(u = (u_n) \in \mathcal{S} \) if and only if \((V_n^{(0)}(\Delta u)) \in \mathcal{S}\) and \((V_n^{(0)}(\Delta u)) \in \mathcal{B}\) (see [4]).

The next definition is a generalization of slow oscillation.

Definition 2.5. A sequence \(u = (u_n) \) is moderately oscillating [9] if for \(\lambda > 1 \),

\[
\lim_{n \to \infty} \max_{n+1 \leq k \leq [\lambda n]} \left| \sum_{j=n+1}^{k} \Delta u_j \right| < \infty. \tag{2.7}
\]

A sequence \((u_n) \in \mathcal{M}\) if and only if \((V_n^{(0)}(\Delta u)) \in \mathcal{B}\) (see [4]).

3. Results and proofs

Theorem 3.1. If \((\omega_n^{(0)}(u)) \in \mathcal{M}\) is a Tauberian condition for \(L \), then for any integer \(m \geq 1 \),

\[(\omega_n^{(m)}(u)) \in \mathcal{M}\] is also a Tauberian condition for \(L \).

Proof. Assume that \((\omega_n^{(0)}(u)) \in \mathcal{M}\) is a Tauberian condition for \(L \). Let \(L - \lim_n u_n = s \). Since \(L \) is \((C, 1)\) regular, it follows by (2.3) that \(L - \lim_n V_n^{(0)}(\Delta u) = 0 \). It is obvious that \(L - \lim_n u_n = s \) implies \(L - \lim_n (n\Delta)^{(m-1)} V_n^{(m-1)}(\Delta u) = 0 \). Since

\[(\omega_n^{(m)}(u)) = (n\Delta)((n\Delta)^{(m-1)} V_n^{(m-1)}(\Delta u))) \in \mathcal{M}, \tag{3.1} \]

by assumption, we have

\[(n\Delta)^{(m-1)} V_n^{(m-1)}(\Delta u) = o(1). \tag{3.2} \]

By the same reasoning, we deduce that

\[(n\Delta)^{(m-2)} V_n^{(m-2)}(\Delta u) = n\Delta((n\Delta)^{(m-2)} V_n^{(m-2)}(\Delta u)) = o(1) \tag{3.3} \]

and \(L - \lim_n (n\Delta)^{(m-2)} V_n^{(m-2)}(\Delta u) = 0 \). Again by assumption, we have

\[(n\Delta)^{(m-2)} V_n^{(m-2)}(\Delta u) = o(1). \tag{3.4} \]

From the identity

\[(n\Delta)^{(m-1)} V_n^{(m-1)}(\Delta u) = (n\Delta)^{(m-2)} V_n^{(m-2)}(\Delta u) - (n\Delta)^{(m-2)} V_n^{(m-2)}(\Delta u), \tag{3.5} \]

(3.2), and (3.4), we have

\[(n\Delta)^{(m-2)} V_n^{(m-2)}(\Delta u) = o(1). \tag{3.6} \]

Continuing in this vein, we have

\[n\Delta V_n^{(1)}(\Delta u) = o(1). \tag{3.7} \]

Since \(L - \lim_n V_n^{(1)}(\Delta u) = 0 \), it follows by (3.7) that

\[V_n^{(1)}(\Delta u) = o(1). \tag{3.8} \]
From (3.7) and (3.8), we have $V_n^{(0)}(\Delta u) = o(1)$. Let $\lim_n \sigma_n^{(1)}(u) = s$ and $V_n^{(0)}(\Delta u) = n\Delta \sigma_n^{(1)}(u) = o(1)$ imply that $\lim_n \sigma_n^{(1)}(u) = s$. Hence, by (2.3), (u_n) converges to s.

Theorem 3.2. If $(\omega_n^{(0)}(u)) \in \mathcal{B}$ is a Tauberian condition for L, then for any integer $m \geq 1$, $(\omega_n^{(m)}(u)) \in \mathcal{B}$ is also a Tauberian condition for L.

Proof. Assume that $\omega_n^{(0)}(u) = O(1)$ is a Tauberian condition for L. Let $L - \lim_n u_n = s$. Since $L - \lim_n (n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = 0$ and $\omega_n^{(m)}(u) = n\Delta((n\Delta)_{m-1} V_n^{(m-1)}(\Delta u)) = O(1)$, $(n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = o(1)$ by assumption. The rest of the proof is as in the proof of Theorem 3.1.

Theorem 3.3. If for some $C \geq 0$, $\omega_n^{(0)}(u) \geq -C$ is a Tauberian condition for L, then for any integer $m \geq 1$, $\omega_n^{(m)}(u) \geq -C$ is also a Tauberian condition for L.

Proof. Assume that $\omega_n^{(0)}(u) \geq -C$ for some $C \geq 0$ is a Tauberian condition for L. Let $L - \lim_n u_n = s$. Since $L - \lim_n (n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = 0$ and $\omega_n^{(m)}(u) = n\Delta((n\Delta)_{m-1} V_n^{(m-1)}(\Delta u)) \geq -C$, $(n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = o(1)$ by assumption. The rest of the proof is as in the proof of Theorem 3.1.

We now prove that if $(\omega_n^{(0)}(u)) \in \mathcal{M}$ (or $\in \mathcal{B}$) is a Tauberian condition for L, then for any integer $m \geq 1$, $(\omega_n^{(m)}(u)) \in \mathcal{B}$ (or $\in \mathcal{M}$) is a Tauberian condition for L, respectively.

Theorem 3.4. If $(\omega_n^{(0)}(u)) \in \mathcal{M}$ is a Tauberian condition for L, then for any integer $m \geq 1$, $(\omega_n^{(m)}(u)) \in \mathcal{B}$ is also a Tauberian condition for L.

Proof. It is sufficient to note that $\omega_n^{(m)}(u) = (n\Delta)_m V_n^{(m-1)}(\Delta u) = V_n^{(0)}(\Delta \omega^{(m-1)}(u)) = O(1)$ implies $(\omega_n^{(m-1)}(u)) \in \mathcal{M}$. Proof now follows from Theorem 3.1.

Theorem 3.5. If $(\omega_n^{(0)}(u)) \in \mathcal{B}$ is a Tauberian condition for L, then for any integer $m \geq 1$, $(\omega_n^{(m)}(u)) \in \mathcal{M}$ is also a Tauberian condition for L.

Proof. It is sufficient to note that $(\omega_n^{(m)}(u)) \in \mathcal{M}$ implies $V_n^{(0)}(\Delta \omega^{(m)}(u)) = \omega_n^{(m+1)}(u) = O(1)$. Proof now follows from Theorem 3.4.

Remark 3.6. Because of the inclusion $\mathcal{N} \subset \mathcal{F} \subset \mathcal{M}$, the condition “belonging to \mathcal{M}” can be replaced by “belonging to \mathcal{F}” or “belonging to \mathcal{N}.”

In Theorems 3.1, 3.2, and 3.3, taking $m = 1$ and replacing \mathcal{M} by \mathcal{F}, we have [1, Theorems 4.1, 4.2, and 4.4] by Canak et al.

Acknowledgment

This research was supported by Adnan Menderes University under Grant FEF-06011.

References

6 Tauberian conditions for a general limitable method

İbrahim Çanak: Department of Mathematics, Adnan Menderes University, 09010 Aydin, Turkey
E-mail address: icanak@adu.edu.tr

Ümit Totur: Department of Mathematics, Adnan Menderes University, 09010 Aydin, Turkey
E-mail address: utotur@adu.edu.tr
Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk