We determine the lower bounds for classes of Rhaly matrices, considered as bounded linear operators on ℓ^p. We improve on and provide correct proofs of the results of the first author (1990).

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

The following conjecture was posed by Axler and Shields. Let $\{x_n\}$ be a monotone decreasing sequence of nonnegative numbers, C the Cesàro matrix of order one. What is the best constant K for which $\|Cx\|_2 \geq K\|x\|_2$ for all such sequences $\{x_n\}$? Lyons [3] determined that the best constant is $\pi/\sqrt{6}$. This result was extended to ℓ^p spaces for $p > 1$ by Bennett [1]. In [1], Bennett established the following result, where $B(\ell^p)$ denotes the set of bounded linear operators on ℓ^p.

Theorem 1. Let $\{x_n\}$ be a monotone decreasing nonnegative sequence, let $A \in B(\ell^p)$ with nonnegative entries, and $1 < p < \infty$. Then

$$\|Ax\|_p \geq L\|x\|_p,$$

where

$$L_p := \inf_r r^{-1} \sum_{j=0}^{\infty} \left(\sum_{k=0}^{r} a_{jk} \right)^p = \inf_r f(r), \quad \text{say.}$$

For $A = C$, the minimum occurs at $f(0)$, which is the sum of the pth power of the first column of C. The proof of the result of Bennett is relatively easy, when contrasted with the task of finding L_p for a particular matrix, or class of matrices.

A factorable matrix is a lower triangular matrix whose nonzero entries a_{nk} can be written in the form $a_n b_k$, where a_n depends only on n and b_k depends only on k. Rhaly [4–6] defined three classes of matrices, all of which are factorable.
2 Factorable matrices

In [8], Rhoades investigated the lower bounds question for the Rhaly matrices, and obtained some partial results. In this paper, we return to the study of the Rhaly matrices, as special cases of factorable matrices. This paper differs from [8] in three important respects. First, one general result is proved, and the theorems of [8] then follow as special cases. Second, the results of [8] are extended to all \(p > 1 \). Third, as an application of the general procedure developed here, we are able to provide a new proof of [7, Theorem 1] as well as to verify the conjecture that, for the weighted mean methods with \(p_n = (n + 1)^\alpha \), \(\alpha \geq 1 \), \(L^p = f(0) \).

For any sequence \(\{x_n\} \), the forward difference operator \(\Delta \) is defined by \(\Delta x_n = x_n - x_{n+1} \), and \(\Delta^{m+1} x_n = \Delta(\Delta^m x_n) \).

Theorem 2. Let \(A \) be a factorable matrix with positive entries, row sums \(t_n \), and \(\{a_n\} \) monotone decreasing. Then sufficient conditions for \(f(0) = L^p \) are that

\[
\Delta y^p_r < 0, \quad \Delta^2 y^p_r > 0, \quad \Delta^2 \left(\frac{1}{\Delta y^p_r} \right) \leq 0,
\]

where \(y_r = t_r/a_r \),

\[
\lim_{r \to \infty} \frac{a^p_{r+1} \Delta y^p_{r+1}}{\Delta^2 y^p_r} \geq 0,
\]

\[
t_0 + 2 \Delta y^p_0 \sum_{j=1}^{\infty} a^p_j \leq 0.
\]

Proof. With

\[
t_n = a_n \sum_{k=0}^{n} b_k, \quad y_n = \frac{t_n}{a_n},
\]

\[
f(r) = \left(\sum_{j=0}^{r} \left(\sum_{k=0}^{j} a_{jk} \right)^p \right) = \frac{1}{r+1} \left[\sum_{j=0}^{r} \left(\sum_{k=0}^{j} a_{jk} \right)^p + \sum_{j=r+1}^{\infty} \left(\sum_{k=0}^{r} a_{jk} \right)^p \right],
\]

\[
f(r) - f(r + 1) = \frac{1}{(r+1)(r+2)} \sum_{j=0}^{r} t^p_j - \frac{t^p_{r+1}}{r+2} + \frac{y^p_r a^p_{r+1}}{r+1} + \Delta \left(\frac{y^p_r}{r+1} \right) \sum_{j=r+2}^{\infty} a^p_j.
\]

Note that

\[
- \frac{t^p_{r+1}}{r+2} + \frac{y^p_r a^p_{r+1}}{r+1} = \frac{y^p_r a^p_{r+1}}{r+1} - \frac{(a_{r+1} y_{r+1})^p}{r+2} = a^p_{r+1} \Delta \left(\frac{y^p_r}{r+1} \right).
\]
Thus

\[f(r) - f(r+1) = \frac{1}{(r+1)(r+2)} \sum_{j=0}^{r} t_j^p + \Delta \left(\frac{y_r^p}{r+1} \right) \sum_{j=r+1}^{\infty} a_j^p. \]

\[(9) \]

Define

\[g(r) = (r+1)(r+2)[f(r) - f(r+1)] \]

\[= \sum_{j=0}^{r} t_j^p + (r+1)(r+2) \Delta \left(\frac{y_r^p}{r+1} \right) \sum_{j=r+2}^{\infty} a_j^p. \]

\[(10) \]

Then

\[g(r) - g(r+1) = -t_{r+1}^p + (r+2) \left[(r+1) \Delta \left(\frac{y_r^p}{r+1} \right) - (r+3) \Delta \left(\frac{y_{r+1}^p}{r+2} \right) \right] \sum_{j=r+2}^{\infty} a_j^p \]

\[+ (r+1)(r+2) \Delta \left(\frac{y_r^p}{r+1} \right) a_{r+1}^p. \]

\[(11) \]

But

\[(r+1) \Delta \left(\frac{y_r^p}{r+1} \right) - (r+3) \Delta \left(\frac{y_{r+1}^p}{r+2} \right) \]

\[= (r+1) \left[\frac{y_r^p}{r+1} - \frac{y_{r+1}^p}{r+2} \right] - (r+3) \left[\frac{y_{r+1}^p}{r+2} - \frac{y_{r+2}^p}{r+3} \right] \]

\[= y_r^p - \frac{(r+1)y_{r+1}^p}{r+2} - (r+3)y_{r+1}^p + y_{r+2}^p = \Delta^2 y_r^p, \]

\[- t_{r+1}^p + (r+1)(r+2) \Delta \left(\frac{y_r^p}{r+1} \right) a_{r+1}^p \]

\[= -(a_{r+1} y_{r+1})^p + (r+1)(r+2) \left(\frac{y_r^p}{r+1} - \frac{y_{r+1}^p}{r+2} \right) a_{r+1}^p \]

\[= a_{r+1}^p \left[- y_{r+1}^p + (r+2)y_r^p - (r+1)y_{r+1}^p \right] = a_{r+1}^p (r+2) \Delta y_r^p. \]

Thus

\[g(r) - g(r+1) = (r+2) a_{r+1}^p (\Delta y_{r+1})^p + (r+2) \Delta^2 y_r^p \sum_{j=r+1}^{\infty} a_j^p. \]

\[(13) \]
Define

\[h(r) = g(r) - g(r + 1) = \frac{a_{r+1}^p \Delta y_r^p}{\Delta^2 y_r^p} + \sum_{j=r+2}^{\infty} a_j^p, \]

\[h(r) - h(r + 1) = \frac{a_{r+1}^p \Delta y_r^p}{\Delta^2 y_r^p} + a_{r+2}^p \left(1 - \frac{\Delta y_{r+1}^p}{\Delta^2 y_{r+1}^p} \right), \]

and \(h(r) - h(r + 1) \geq 0 \) if and only if

\[a_{r+1}^p \left(\frac{\Delta y_{r+1}^p}{\Delta y_{r+2}^p} - 1 \right) - a_{r+2}^p \left(1 - \frac{\Delta y_{r+1}^p}{\Delta y_r^p} \right) \geq 0. \]

Since \(\{a_r\} \) is monotone decreasing, it is sufficient to have

\[\frac{\Delta y_{r+1}^p}{\Delta y_{r+2}^p} - 1 \geq 1 - \frac{\Delta y_{r+1}^p}{\Delta y_r^p}, \]

that is,

\[\Delta y_{r+1}^p \left(\frac{1}{\Delta y_r^p} + \frac{1}{\Delta y_{r+2}^p} \right) \geq 2. \]

Using (3), \(\Delta y_{r+1}^p > \Delta y_{r+2}^p \) and \(\Delta y_{r+1}^p < \Delta y_r^p \). Since \(\Delta y_r^p < 0 \), the above inequality is equivalent to (4). Thus \(h \) is monotone decreasing in \(r \). From (5), \(h \) is nonnegative, so \(g \) is monotone decreasing in \(r \). From (6), \(g(0) \) is negative, so that \(f \) is monotone increasing in \(r \). \(\square \)

Lemma 3. Define sequences \(\{u(r)\} \) and \(\{v(r)\} \) by \(u(r) = 1/\Delta v(r) \). Then \(\Delta^2 u(r) \) can be written in the form

\[\Delta^2 u(r) = \frac{1}{\Delta v(r)} \left[\frac{2 \Delta^2 v(r) \Delta v(r + 1)}{\Delta v(r + 1) \Delta v(r + 2)} - \frac{\Delta^3 v(r)}{\Delta v(r + 2)} \right]. \]

Proof. The equation \(u(r) = 1/\Delta v(r) \) implies that

\[\Delta u(r) \Delta v(r) + u(r + 1) \Delta^2 v(r) = 0, \]
\[\Delta u(r) = -\frac{u(r + 1)\Delta^2 v(r)}{\Delta v(r)}. \]

(20)

Hence

\[\Delta^2 u(r)\Delta v(r) + 2\Delta u(r + 1)\Delta^2 v(r) + u(r + 2)\Delta^3 v(r) = 0, \]

(21)

or

\[\Delta^2 u(r) = \frac{1}{\Delta v(r)}\left[-2\Delta^2 v(r)\left(-\frac{u(r + 2)\Delta^2 v(r + 2)}{\Delta v(r + 1)} \right) - \frac{\Delta^3 v(r)}{\Delta v(r + 2)} \right]. \]

(22)

Lemma 4. Suppose that \(v \in C^3[0, \infty) \). If, for all \(0 < t < 1 \), \(p > 1 \), one has

(a) \(v' > 0 \),

(b) \(v'' > 0 \),

(c) \(2(v'')^2 - v'v''' > 0 \),

then \(\Delta^2 v(r) \leq 0 \).

Proof. Conditions (a) and (b) imply that \(\Delta v(r) < 0 \) and \(\Delta^2 v(r) > 0 \). Therefore, from (18), \(\Delta^2 u(r) \leq 0 \). \(\square \)

The Rhaly generalized Cesàro matrices [4] are factorable matrices with nonzero entries

\[a_n = t^n/(n + 1), \quad b_k = t^{-k}, \]

where \(0 < t < 1 \). If \(t = 1 \), the matrix reduces to \(C \).

Theorem 5. Let \(p > 1 \). Then, for the Rhaly generalized Cesàro matrices, \(L^p = f(0) \) for \(t_0 \leq t < 1 \), where \(t_0 \) satisfies

\[1 - 2 \left[\left(\frac{1 + t_0}{t_0} \right)^p - 1 \right] \sum_{j=1}^{\infty} \left(\frac{t_0^j}{j + 1} \right)^p = 0. \]

(23)

Proof. First, we will show that conditions (a)–(c) of Lemma 4 are satisfied. Clearly

\[t_n = \frac{1 - t^{n+1}}{(n + 1)(1 - t)}, \quad y_n = \frac{1 - t^{n+1}}{t^n(1 - t)}. \]

(24)

Thus

\[v(r) = \frac{1}{(1 - t)^p} \left(\frac{1 - t^{r+1}}{t^r} \right)^p, \]

\[v'(r) = \frac{pt^{-r} \log(1/t)}{(1 - t)^p} (t^{-r} - t)^{p-1}, \]

(25)

\[v''(r) = p(1 - t)^{-p} (t^{-r} - t)^{p-2} (pt^{-2r} - t^{-r+1}) \left(\log \left(\frac{1}{t} \right) \right)^2, \]
and (a) and (b) are satisfied.

\[v'''(r) = p(1 - t)^{-p} \left[\left(\frac{1}{t} \right) \right]^2 \left[(p - 2)(t^{-r} - t)^{p-3} (- t^{-r} \log t) (pt^{-2r} - t^{-r+1}) \right. \\
+ \left. (t^{-r} - t)^{p-2} (- 2pt^{-2r} \log t + t^{-r+1} \log t) \right] \]

\[= p(1 - t)^{-p} (t^{-r} - t)^{p-3} t^{-3r} \left(\log \left(\frac{1}{t} \right) \right)^3 \times [(p - 2)(p - t^{r+1}) + (t^{-r} - t)(2pt - t^{2r+1})]. \]

(26)

It then follows that

\[2(v'')^2 - vv''' = 2 \left[p(1 - t)^{-p} (t^{-r} - t)^{p-2} (pt^{-2r} - t^{-r+1}) \left(\log \left(\frac{1}{t} \right) \right)^2 \right]^2 \\
- p(1 - t)^{-p} t^{-r} \log \left(\frac{1}{t} \right) (t^{-r} - t)^{p-1} \\
\times p(1 - t)^{-p} (t^{-r} - t)^{p-3} t^{-3r} \left(\log \left(\frac{1}{t} \right) \right)^3 \times [p^2 - (3p - 1)t^{r+1} + t^{2r+2}] \\
= p^2 t^{-4r} (1 - t)^{-2p} \left(\log \left(\frac{1}{t} \right) \right)^4 (t^{-r} - t)^{2p-4} w(r, p), \]

where

\[w(r) = p^2 - (p + 1)t^{r+1} + t^{2r+2}. \]

Note that \(w'(r) > 0 \) for \(p \geq 1 \). Therefore, \(w \) is monotone increasing in \(r \). Since \(w(0) > 0 \), \(w \) is positive for \(0 < t < 1, r \geq 0 \), and condition (4) is satisfied. Thus \(h \) is monotone decreasing in \(r \):

\[\lim_{r \to \infty} h(r) = \lim_{r \to \infty} \left(\frac{t^{r+1}}{r + 2} \right)^{p} \]

\[= \frac{\left[(1/(1-t)^p) \{(1-t^{r+2}/t^{r+1})^p - (1-t^{r+3}/t^{r+2})^p \} \right]}{\left[(1/(1-t)^p) \{(1-t^{r+1}/t)^p - 2(1-t^{r+2}/t^{r+1})^p + (1-t^{r+3}/t^{r+2})^p \} \right]} \]

(29)
Since the limit of the quantity in brackets is \((t^p - 1)/(t^p - 1)^2\), \(\lim_{r \to \infty} h(r) = 0\), and condition (5) of Theorem 2 is satisfied; that is, \(g\) is monotone decreasing in \(p\),

\[
g(0) = t_0^p + 2[y_0^p - y_1^p] \sum_{j=1}^{\infty} a_j^p
= 1 - 2\left[\left(\frac{1+t}{t}\right)^p - 1\right] \sum_{j=1}^{\infty} \left(\frac{t^j}{j+1}\right)^p = q(t,p), \quad \text{say,}
\]

\[
\frac{\partial q}{\partial t} = -2p\left(\frac{1+t}{t}\right)^{p-1} \left(-\frac{1}{t^2}\right) \sum_{j=1}^{\infty} \left(\frac{t^j}{j+1}\right)^p
- 2\left[\left(\frac{1+t}{t}\right)^p - 1\right] p \sum_{j=1}^{\infty} \frac{pjt_j}{(j+1)^p}
= 2p \sum_{j=1}^{\infty} \left(\frac{t^j}{j+1}\right)^p \left[\left(\frac{1+t}{t}\right)^{p-1} \frac{1}{t^2} - \left(\frac{1+t}{t}\right)^p - 1\right] \frac{j}{t}.
\]

Since the coefficient of \(j\) is negative, the quantity in brackets is monotone decreasing in \(j\). For \(j = 1\), it becomes

\[
\frac{1}{t^2} \left[\left(\frac{1+t}{t}\right)^{p-1} + t - t\left(\frac{1+t}{t}\right)^p\right]
= \frac{1}{t^2} \left[\left(\frac{1+t}{t}\right)^{p-1} (1 - 1 - t) + t\right] = \frac{1}{t} \left[1 - \left(\frac{1+t}{t}\right)^{p-1}\right] < 0,
\]

and \(q\) is monotone decreasing in \(t\).

\[
q(1,p) = 1 - 2[2^p - 1] \sum_{j=1}^{\infty} \frac{1}{(j+1)^p}.
\]

The function in brackets is convex in \(p\) for \(p > 1\). So also is the series. Therefore, so is the product. Multiplying by \(-1\) yields a concave function. Since 1 is also concave, \(q(1,p)\) is a concave function of \(p\) for \(p > 1\). Since

\[
\lim_{p \to \infty} q(1,p) = 0,
\]

\(g(0)\) is negative for those values of \(t > t_0\), where \(t_0\) satisfies (23); that is, (6) of Theorem 2, and \(L^p = f(0)\). □

The Rhaly \(s\)-Cesáro matrices [5] are factorable matrices with nonzero entries \(a_n = (n+1)^{-s}, s > 1\), and each \(b_k = 1\). Thus \(t_n = (n+1)^{s-1}\) and \(y_n = n + 1\).

Theorem 6. For the Rhaly \(s\)-Cesáro matrices, \(L^p = f(\infty)\) for \(p, s > 1\).
8 Factorable matrices

Proof. First, we will show that conditions (a)–(c) of Lemma 4 are satisfied,

\[v(r) = (r + 1)^p, \quad v'(r) = p(r + 1)^{p-1}, \quad v''(r) = p(p - 1)(r + 1)^{p-2}, \]

and conditions (a) and (b) are satisfied,

\[v'''(r) = p(p - 1)(p - 2)(r + 1)^{p-3}. \]

Therefore

\[
2(v'')^2 - v'v''' = 2(p(p - 1)(r + 1)^{p-2})^2 - p(r + 1)^{p-1}q(p - 1)(p - 2)(r + 1)^{p-3} \\
= p^2(p - 1)(r + 1)^{2p-4}[2(p - 1) - (p - 2)] \\
= p^3(p - 1)(r + 1)^{2p-4} > 0,
\]

and condition (c) is satisfied,

\[
0 \leq h(r) \leq \sum_{j=r+1}^{\infty} \frac{1}{(j+1)^{3p}}.
\]

Therefore \(\lim_{r \to \infty} h(r) = 0 \) and condition (5) of Theorem 2 is satisfied. Thus \(g \) is monotone decreasing in \(r \),

\[
g(r) = \sum_{j=0}^{r} \frac{1}{(j+1)^{s-1}p} + (r + 1)(r + 2)[(r + 1)^{s-1} - (r + 2)^{s-1}] \sum_{j=r+1}^{\infty} \frac{1}{(j + 1)^{ps}}.
\]

It then follows that

\[
\lim_{r \to \infty} g(r) = \sum_{j=0}^{\infty} \frac{1}{(j + 1)(p-1)s} > 0,
\]

and so \(L^p = f(\infty) \).

The Rhaly terraced matrices [6] are factorable matrices with each \(b_k = 1 \) and \(a_n = a_n \), where \(\{a_n\} \) is a monotone decreasing positive sequence such that \(\lim (n + 1)a_n \) exists. Clearly \(t_n = (n + 1)a_n \) and \(y_n = n + 1 \).

Theorem 7. For the Rhaly terraced matrices, \(L^p = f(0) \) for \(p > 1 \).

Proof. Since \(y_n = n + 1 \), the first part of the proof of Theorem 6 applies and \(h \) is monotone decreasing in \(r \),

\[
h(r) = \sum_{j=r+1}^{\infty} \frac{\left[(r + 2)^p - (r + 3)^p \right]}{(r + 1)^p - 2(r + 2)^p + (r + 3)^p} + \sum_{j=r+1}^{\infty} \frac{a_j^p}{a_j^p} \leq \sum_{j=r+1}^{\infty} \frac{a_j^p}{a_j^p},
\]

□
and \(\lim h(r) = 0 \), so that \(g \) is monotone decreasing in \(r \),

\[
g(0) = a_0^p + 2[1 - 2^{p-1}] \sum_{j=1}^{\infty} a_j^p
\]

\[
= a_0^p - 2(2^{p-1} - 1)a_1^p - 2(2^{p-1} - 1) \sum_{j=2}^{\infty} a_j^p < 0, \tag{41}
\]

since \(\{a_n\} \) is monotone decreasing. Therefore \(L^p = f(0) \). \hfill \square

A weighted mean matrix is a factorable matrix with \(a_n = 1/P_n, b_k = p_k \), where \(\{p_k\} \) is a nonnegative sequence with \(p_0 > 0 \) and \(P_n := \sum_{k=0}^{n} p_k \).

Theorem 8. Let \((\overline{N}, p_n) \) be a weighted mean method with the \(\{p_n\} \) nondecreasing. Then

\[
1 + (r + 1) \left(\frac{P_{r+1}}{P_r} \right)^p - (r + 2) \left(\frac{P_{r+2}}{P_{r+1}} \right)^p \geq 0 \quad \text{for each } r \geq 0, \quad p > 1, \tag{42}
\]

is a sufficient condition for \(L^p = f(0) \).

Proof. Since a weighted mean matrix has row sums one, from (9),

\[
f(r) - f(r + 1) = \frac{1}{r + 2} + \Delta \left(\frac{P_r^p}{r + 1} \right) \sum_{j=r+1}^{\infty} \frac{1}{P_j^p}. \tag{43}
\]

Thus

\[
g(r) = \frac{f(r) - f(r + 1)}{\Delta(P_r^p/(r + 1))} = \frac{1}{(r + 2)\Delta(P_r^p/(r + 1))} + \sum_{j=r+1}^{\infty} \frac{1}{P_j^p}, \tag{44}
\]

\[
g(r) - g(r + 1) = \frac{1}{(r + 2)\Delta(P_r^p/(r + 1))} - \frac{1}{(r + 3)\Delta(P_{r+1}^p/(r + 2))} + \frac{1}{P_{r+1}^p}
\]

\[
= \frac{1}{P_{r+1}^p(r + 2)(r + 3)\Delta(P_r^p/(r + 1))\Delta(P_{r+1}^p/(r + 2))} m(r), \tag{45}
\]

where

\[
m(r) = P_{r+1}^p(r + 3)\Delta \left(\frac{P_{r+1}^p}{r + 2} \right) - P_{r+1}^p(r + 2)\Delta \left(\frac{P_r^p}{r + 1} \right) + (r + 2)(r + 3)\Delta \left(\frac{P_r^p}{r + 1} \right) \Delta \left(\frac{P_{r+1}^p}{r + 2} \right)
\]

\[
= P_{r+1}^p \left[(r + 3) \left(\frac{P_{r+1}^p}{r + 2} - \frac{P_{r+2}^p}{r + 3} \right) - (r + 2) \left(\frac{P_r^p}{r + 1} - \frac{P_{r+1}^p}{r + 2} \right) \right]
\]

\[
+ (r + 2)(r + 3) \left(\frac{P_r^p}{r + 1} - \frac{P_{r+1}^p}{r + 2} \right) \left(\frac{P_{r+1}^p}{r + 2} - \frac{P_{r+2}^p}{r + 3} \right)
\]
\[= p_{r+1}^p \left[\left(\frac{r + 2}{r + 1} \right) p_{r+1}^p - \left(\frac{r + 2}{r + 1} \right) p_{r+2}^p + \left(\frac{r + 3}{r + 2} \right) p_{r+1}^p \right] \\
+ \left(\frac{r + 3}{r + 1} \right) p_{r+1}^p - \left(\frac{r + 3}{r + 2} \right) (p_{r+1}^p)^2 - p_{r+2}^p \left(\frac{r + 2}{r + 1} \right) + p_{r+1} p_{r+2}^p \\
= p_{r+1}^p \left[\left(\frac{r + 3}{r + 2} \right) p_{r+1}^p - p_{r+2}^p - \left(\frac{r + 2}{r + 1} \right) p_{r+1}^p + p_{r+2}^p \right] \\
- \left(\frac{r + 2}{r + 1} \right) p_{r+1}^p p_{r+2}^p \\
= p_{r+1}^p \left[\frac{1}{r + 1} p_{r}^p + p_{r+1}^p \right] - \left(\frac{r + 2}{r + 1} \right) p_{r+1}^p p_{r+2}^p \\
= \frac{1}{r + 1} \left[p_{r+1}^p p_{r}^p + (r + 1)(p_{r+1}^p)^2 - (r + 2)p_{r+1}^p p_{r+2}^p \right] \\
= \frac{p_{r+1}^p p_{r}^p}{r + 1} \left[1 + (r + 1) \left(\frac{p_{r+1}^p}{p_{r}^p} \right)^p - (r + 2) \left(\frac{p_{r+2}^p}{p_{r+1}^p} \right)^p \right] \geq 0, \quad (46)\]

which is [7, Theorem 1, condition (1)] without any monotonicity condition on the \{p_n\}.

Thus \(g\) is monotone decreasing in \(r\).

Since \(\{p_n\}\) is nondecreasing, \(P_r \leq (r + 1) P_r;\) that is, \(P_r/P_r \geq (r + 1)^{-1}\). Thus

\[
\frac{P_{r+1}}{P_r} = 1 + \frac{P_{r+1}}{P_r} \geq 1 + \frac{P_r}{P_r} \geq \frac{r + 2}{r + 1}, \quad (47)
\]

and \(P_{r+1}/P_r(r + 2) \geq P_r(r + 1)\).

Using (44), since \(p > 1\),

\[
\lim |g(r)| = \lim \left| \frac{(r + 1) p_{r}^p}{p_{r+1}^p [(r + 2)p_{r}^p - (r + 1)p_{r+1}^p]} \right| \\
= \lim \left| \frac{r + 1}{p_{r+1}^p [(r + 2) - (r + 1)(P_{r+1}/P_r)^p]} \right| \quad (48)
\]

\[
= \lim \left(\frac{(r + 1)}{p_{r+1}^p [(r + 2) - (r + 1)(P_{r+1}/P_r)^p]} \right).
\]

Using the fact that \((1 + x)^p \geq 1 + px\) for \(p > 1, x > -1\),

\[
\lim |g(x)| \leq \lim \left(\frac{(r + 1)}{p_{r+1}^p [(r + 1)(1 + pp_{r+1}/P_r) - (r + 2)]} \right) \\
= \lim \left(\frac{r + 1}{P_r [p(r + 1)p_{r+1}/P_r - 1]} \right) \quad (49)
\]

\[
\leq \lim \frac{r + 1}{P_r(p - 1)} = 0.
\]
Therefore $\lim g(r) = 0$ and g is positive for all r. From (44), since $\Delta(P_r^\alpha/(r+1)) < 0$, $L^\alpha = f(0)$. □

Corollary 9. Suppose (\overline{N}, p) is a weighted mean method with $p_n = (n+1)^\alpha$, $\alpha \geq 1$. Then $L^\alpha = f(0)$.

Proof. To show that (42) is satisfied, it is sufficient to show that

$$\left(\frac{r+1}{r}\right)^p \left(\frac{P_{r+1}}{P_r}\right)^p$$

is convex. The function $r = 1$ is trivially convex. Since $p > 1$, it will be enough to show that P_{r+1}/P_r is convex.

Define

$$n(r) = 1 + \frac{P_{r+1}}{P_r} = 1 + \frac{(r+2)^\alpha}{\sum_{k=0}^r (k+1)^\alpha}. \quad (51)$$

Then

$$\Delta^2 n(r) = \frac{(r+2)^\alpha}{\sum_{k=0}^r (k+1)^\alpha} - \frac{2(r+3)^\alpha}{\sum_{k=0}^{r+1} (k+1)^\alpha} + \frac{(r+4)^\alpha}{\sum_{k=0}^{r+2} (k+1)^\alpha}$$

$$= \frac{n(r)}{\left(\sum_{k=0}^r (k+1)^\alpha\right) \left(\sum_{k=0}^{r+1} (k+1)^\alpha\right) \left(\sum_{k=0}^{r+2} (k+1)^\alpha\right)}, \quad (52)$$

where

$$n(r) = (r+2)^\alpha \left(\sum_{k=0}^{r+1} (k+1)^\alpha\right) \left(\sum_{k=0}^{r+2} (k+1)^\alpha\right) - 2(r+3)^\alpha \left(\sum_{k=0}^r (k+1)^\alpha\right) \left(\sum_{k=0}^{r+2} (k+1)^\alpha\right)$$

$$\quad + (r+4)^\alpha \left(\sum_{k=0}^r (k+1)^\alpha\right) \left(\sum_{k=0}^{r+1} (k+1)^\alpha\right)$$

$$= (r+2)^\alpha \left[\sum_{k=0}^r (k+1)^\alpha + (r+2)^\alpha\right] \times \left[\sum_{k=0}^r (k+1)^\alpha + (r+2)^\alpha + (r+3)^\alpha\right]$$

$$- 2(r+3)^\alpha \left(\sum_{k=0}^r (k+1)^\alpha\right) \left(\sum_{k=0}^r (k+1)^\alpha + (r+2)^\alpha + (r+3)^\alpha\right)$$

$$\quad + (r+4)^\alpha \left(\sum_{k=0}^r (k+1)^\alpha\right) \left(\sum_{k=0}^r (k+1)^\alpha + (r+2)^\alpha\right)$$

$$= \left(\sum_{k=0}^r (k+1)^\alpha\right)^2 [(r+2)^\alpha - 2(r+3)^\alpha + (r+4)^\alpha]$$
\[
+ \left[(r + 2)^{2a} + (r + 2)^{2a} + ((r + 2)(r + 3))^a \right.
\]
\[
- 2((r + 2)(r + 3))^a - 2(r + 3)^{2a} + ((r + 4)(r + 2))^a \]
\[
\times \left(\sum_{k=0}^{r} (k + 1)^a \right) + (r + 2)^3a + (r + 2)^{2a}(r + 3)^a.
\]

(53)

Since \(a \geq 1 \), \((r + 2)^a\) is convex, so the first quantity in brackets is positive. The second quantity in brackets can be written in the form

\[
(r + 2)^a \left\{ (r + 2)^a - 2(r + 3)^a + (r + 4)^a \right\} + (r + 2)^a + (r + 3)^a ((r + 2)^a - 2),
\]

which is positive. Therefore \(n(r) \) is convex and (42) is satisfied. □

Corollary 10. Let \(1 < p < \infty \), \(H \) the Hausdorff matrix generated by \(\mu_n = a/(n + a), \ a \geq 1 \). Then \(L^p = f(0) \).

Proof. \(H \) is also a weighted mean matrix with \(p_n = p_0 \Gamma(n + a)/\Gamma(a + 1) \Gamma(n + 1) \) and \(P_n = p_0 \Gamma(n + a + 1)/\Gamma(a + 1) \Gamma(n + 1) \). Substituting in (42), one obtains

\[
1 + (r + 1) \left(\frac{r + a + 1}{r + 1} \right)^p - (r + 2) \left(\frac{r + a + 2}{r + 2} \right)^p,
\]

and it is sufficient to prove that \((r + a + 1)/(r + 1)\) is convex, which it is. □

The Cesàro matrix of order one, written \((C,1)\), is a Hausdorff matrix with generating sequence \(\mu_n = (n + 1)^{-1} \).

Corollary 11. For \((C,1)\), \(L^p = f(0) \).

Proof. Use Corollary 10 with \(a = 1 \). □

Remarks 12. (1) The condition that the \(\{p_n\} \) be nondecreasing is not a necessary condition for \(L^p = f(0) \). For example, take \(p_n = 2/(n + 1)(n + 2) \). Then \(\{p_n\} \) is monotone decreasing and satisfies (42) and

\[
\Delta \left(\frac{P_r}{r + 1} \right) < 0.
\]

(56)

(2) Bennett [1] proved that \(L^p = f(0) \) for the Hilbert matrix.

(3) In [2], Bennett has shown that \(L^p = f(0) \) for each Hausdorff matrix \(H \in B(\ell^p) \) with nonnegative entries.

(4) No results have been established for Nörlund matrices.

An interesting open question is the following. If \(\{p_n\} \) is nondecreasing, must \(\{p_n\} \) satisfy (42)?
References

B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
E-mail address: rhoades@indiana.edu

Pali Sen: Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224, USA
E-mail address: psen@unf.edu
Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk