ON THE MEAN VALUE PROPERTY OF SUPERHARMONIC AND SUBHARMONIC FUNCTIONS

ROBERT DALMASSO

Received 19 October 2005; Revised 25 January 2006; Accepted 16 February 2006

We prove a converse of the mean value property for superharmonic and subharmonic functions. The case of harmonic functions was treated by Epstein and Schiffer.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

Recall that a function u is harmonic (superharmonic, subharmonic) in an open set $U \subset \mathbb{R}^n$ ($n \geq 1$) if $u \in C^2(U)$ and $\Delta u = 0$ ($\Delta u \leq 0$, $\Delta u \geq 0$) on U. Denote by $H(U)$ the space of harmonic functions in U and $SH(U)$ ($sH(U)$) the subset of $C^2(U)$ consisting of superharmonic (subharmonic) functions in U. If $A \subset \mathbb{R}^n$ is Lebesgue measurable, $L^1(A)$ denotes the space of Lebesgue integrable functions on A and $|A|$ denotes the Lebesgue measure of A when A is bounded.

We also recall the mean value property of harmonic, superharmonic, and subharmonic functions in U ([2]): if $x \in U$ and $B(x, r) = \{ y \in \mathbb{R}^n; \| y - x \| < r \}, r > 0$, is such that $B(x, r) \subset U$, then for all $u \in H(U)$ ($SH(U), sH(U)$),

$$u(x) = (\geq, \leq) \frac{1}{|B(x, r)|} \int_{B(x, r)} u(y) dy. \quad (1)$$

Using the Lebesgue-dominated convergence theorem we see that the conclusion above holds whenever $B(x, r) \subset U$ if $u \in H(U) \cap L^1(B(x, r))$ ($SH(U) \cap L^1(B(x, r)), sH(U) \cap L^1(B(x, r))$). Epstein and Schiffer [1] proved the following converse.

Theorem 1. Let $\Omega \subset \mathbb{R}^n$ ($n \geq 1$) be a bounded open set. Suppose that there exists $x_0 \in \Omega$ such that

$$u(x_0) = \frac{1}{|\Omega|} \int_{\Omega} u(x) dx \quad (2)$$

for every $u \in H(\Omega) \cap L^1(\Omega)$. Then Ω is a ball with center x_0.

A more general result was obtained by Kuran [3]. In this note we give a proof of the following converse.
2 Mean value property of super (sub) harmonic functions

Theorem 2. Let $\Omega \subset \mathbb{R}^n$ ($n \geq 1$) be a bounded open set. Suppose that there exists $x_0 \in \Omega$ such that
\[
u(x_0) \geq (\leq) \frac{1}{|\Omega|} \int_\Omega u(x)dx
\]
for every $u \in \text{SH}(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$ ($\text{sH}(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$). Then Ω is a ball with center x_0.

Proof. Clearly it is enough to consider the case of superharmonic functions. Since Ω is bounded, there exists a largest open ball B centered at x_0 of radius r_1 which lies in Ω. The compactness of $\partial \Omega$ implies that there is some $x_1 \in \partial \Omega$ such that $|x_1 - x_0| = r_1$. We will show that $\Omega = B$. Define
\[
h(x) = r_1^{n-2} \left(||x - x_0||^2 - r_1^2\right)||x - x_1||^{-n}
\]
for $x \in \mathbb{R}^n \setminus \{x_1\}$. Then $h \in H(\mathbb{R}^n \setminus \{x_1\})$ and $h(x_0) = -1$. Now let $R > r_1$ be such that $\Omega \subset B(x_0, R)$. For $k \in \mathbb{N}^*$ we set
\[
u_k(x) = 1 + h(x) + \frac{1}{2nk} \left(R^2 - ||x - x_0||^2\right), \quad x \in \Omega.
\]
Obviously $u_k \in C^2(\Omega)$ and $\Delta u_k = -1/k$ in Ω, hence $u_k \in \text{SH}(\Omega) \setminus H(\Omega)$. Moreover $u_k \in L^1(\Omega)$ and $u_k(x) \geq 1$ for $x \in \Omega \setminus B$. Since $1 + h \in H(\Omega) \cap L^1(\Omega)$, we have
\[
0 = 1 + h(x_0) = \int_B (1 + h(x)) dx.
\]
Now using (6) we can write
\[
\frac{R^2}{2nk} = \frac{1}{|\Omega|} \int_\Omega \nu_k(x)dx = \frac{1}{|\Omega|} \int_{\Omega \setminus B} \nu_k(x)dx + \frac{1}{|\Omega|} \int_B \nu_k(x)dx
\]
\[
= \frac{1}{|\Omega|} \int_{\Omega \setminus B} \nu_k(x)dx + \frac{1}{2nk|\Omega|} \int_B \left(R^2 - ||x - x_0||^2\right)dx
\]
\[
\geq \frac{|\Omega \setminus B|}{|\Omega|} + \frac{\omega_n r_1^n}{2nk|\Omega|} \left(\frac{R^2}{n} - \frac{r_1^2}{n + 2}\right)
\]
\[
\geq \frac{|\Omega \setminus B|}{|\Omega|} + \frac{\omega_n r_1^n}{2nk|\Omega|} \left(\frac{R^2}{n} - \frac{r_1^2}{n + 2}\right)
\]
for all $k \in \mathbb{N}^*$, where ω_n denotes the measure of the unit sphere in \mathbb{R}^n. This implies that $|\Omega \setminus \overline{B}| = 0$. Then the open set $\Omega \setminus \overline{B}$ must be empty, hence $\Omega \subset \overline{B}$. Since Ω is open and $B \subset \Omega \subset \overline{B}$, we deduce that $\Omega = B$. \square

References

Robert Dalmasso: Laboratoire LMC-IMAG, Equipe EDP, Tour IRMA, BP 53, 38041 Grenoble Cedex 9, France
E-mail address: robert.dalmasso@imag.fr
Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com