ESTIMATES FOR THE NORMS OF SOLUTIONS OF DIFFERENCE SYSTEMS WITH SEVERAL DELAYS

RIGOBERTO MEDINA

Received 1 August 2003

We derive explicit stability conditions for time-dependent difference equations with several delays in \(C^n \) (the set of \(n \) complex vectors) and estimates for the size of the solutions. The growth rates obtained here are not necessarily decay rates.

2000 Mathematics Subject Classification: 39A10.

1. Introduction. Stability of systems of difference equations with delays has been discussed by many authors, for example, see Gil’ and Cheng [6], Zhang [11], Elaydi and Zhang [5], Pituk [10], Agarwal [1], and the references therein.

In the stability literature, one can find two major trends; stability using the first approximation Lyapunov method and the direct Lyapunov functional method. For this latter trend, see Zhang and Chen [12], Crisci et al. [4], Lakshmikantham and Trigiante [7], and Agarwal and Wong [2]. By this method many very strong results are obtained. But finding Lyapunov functionals is usually a difficult task.

In this note, we consider a class of perturbed difference equations with several delays and, by means of a Gronwall inequality and the recent estimates for the powers \(A^k \) of a constant matrix \(A \) established in Corduneanu [3], we derive explicit stability conditions. Further, we suppose that the unperturbed linear difference equations have a bounded growth. Actually, this work is an extension of Medina [8] to time-dependent difference equations with several delays.

2. Preliminary facts. Let \(C^n \) be the set of \(n \) complex vectors endowed with a norm \(\| \cdot \| \). Let \(A_k \) \((k = 1, 2, \ldots)\) be \(n \times n \)-complex matrices.

Consider in \(C^n \) the equation

\[
 u_{j+1} = A_j u_j + f_j(u_{j-\sigma_1}, \ldots, u_{j-\sigma_p}), \quad j = 0, 1, \ldots, \tag{2.1}
\]

where \(p \geq 1, \sigma_1, \sigma_2, \ldots, \sigma_p \) are nonnegative integers such that \(0 = \sigma_1 < \sigma_2 < \cdots < \sigma_p, \sigma_i \in \mathbb{Z}^+ \), and \(\mathbb{Z}^+ \) is the set of nonnegative integers, \(f_j, j = 0, 1, 2, \ldots, \) maps \(C^{np} \) into \(C^n \).

We will consider (2.1) subject to the initial conditions

\[
 u_j = \tau_j, \quad j = -\sigma_p, -\sigma_p + 1, \ldots, 0. \tag{2.2}
\]
It is assumed that there are nonnegative sequences q_l ($l = 1, 2, 3, \ldots, p$) such that
\[
\|f_j(u_{j-\sigma_1}, \ldots, u_{j-\sigma_p})\| \leq \sum_{l=1}^{p} q_l(j) \|u_{j-\sigma_l}\|^m, \quad j = 0, 1, \ldots, \tag{2.3}
\]
and m is a fixed positive real number.

Unlike differential equations, discrete equations with the given initial conditions always have a solution.

In order to establish our main result, we will use the following discrete Gronwall-type inequality.

Theorem 2.1 [9]. Assume that
\[
z(k) \leq C + \sum_{i=0}^{k-1} \sum_{j=1}^{p} a_j(i) z(i - \sigma_j)^m, \quad k \in Z^+, \tag{2.4}
\]
where $m > 0$, $0 = \sigma_1 < \sigma_2 < \cdots < \sigma_p$, $p \geq 1$, $C > 0$, $a_j(k) \geq 0$ for $j = 1, 2, \ldots, p$ and $k \in Z^+$, and $z(k) \leq C$ for $k = -\sigma_p, -\sigma_p + 1, \ldots, 0$.

(a) If $0 < m < 1$ and $C \leq 1$, then
\[
z(k) \leq C m^k \prod_{i=0}^{k-1} \left[1 + \sum_{j=1}^{p} a_j(i) \right], \quad k \in Z^+. \tag{2.5}
\]

(b) If $m = 1$, then
\[
z(k) \leq C \prod_{i=0}^{k-1} \left[1 + \sum_{j=1}^{p} a_j(i) \right], \quad k \in Z^+. \tag{2.6}
\]

(c) If $m > 1$, then
\[
z(k) \leq \frac{C}{1 - (m - 1) C^{-1} \sum_{j=0}^{k-1} \sum_{i=1}^{p} a_j(i)} \left\{ \frac{1}{(m - 1)} \right\}^{1/(m-1)}, \quad k \in Z^+, \tag{2.7}
\]
provided that
\[
1 - (m - 1) C^{-1} \sum_{i=0}^{k-1} \sum_{j=1}^{p} a_j(i) > 0, \quad k \in Z^+. \tag{2.8}
\]

Assumption 2.2. It is assumed that the unperturbed linear difference equation
\[
u_{j+1} = A_j \nu_j, \quad j = 0, 1, \ldots, \tag{2.9}
\]
has a bounded growth, that is, there exist real constants $\gamma \geq 1$ and $\alpha > 0$ such that
\[
\|\Phi(j, i)\| \leq \gamma \alpha^{j-i}, \quad \forall j \geq i \geq 0, \tag{2.10}
\]
where $\Phi(k, l) = \prod_{j=l}^{k-1} A_j$, $k > l$, is the fundamental matrix solution of (2.9).
3. Main results. Now, we are in a position to establish our main results pertaining to the bounded growth and the zero convergence properties of the solutions of (2.1) subject to the conditions (2.2).

Theorem 3.1. Assume that conditions (2.3) and (2.10) hold. In addition, assume that

\[\sum_{i=0}^{\infty} \sum_{l=1}^{p} \alpha^{(m-1)i-m\sigma_l} q_l(i) < \infty. \]

(3.1)

Then,

(a) if \(0 < m \leq 1\) and \(C = \gamma \|\tau_0\| \leq 1\), every solution \(u_j\) of (2.1), (2.2), such that \(\|u_j\| \leq C \alpha_j\) for \(j = -\sigma_p, -\sigma_p + 1, \ldots, 0\), satisfies

\[\|u_j\| \leq \alpha_j \gamma^{j\|\tau_0\|} \exp \left(\gamma \sum_{i=0}^{\infty} \sum_{l=1}^{p} \beta_l(i)\right), \quad j = 1, 2, \ldots, \]

(3.2)

where \(\beta_l(i) = \alpha^{(m-1)i-m\sigma_l-1} q_l(i)\),

(b) if \(m > 1\) and

\[\|u_0\| \leq \left\{ \frac{\eta}{(m-1)\lambda^y} \right\}^{1/(m-1)}, \quad \lambda = \sum_{i=0}^{\infty} \sum_{l=1}^{p} \beta_l(i), \]

(3.3)

for some \(\eta \in (0, 1)\) and \(C = \gamma \|\tau_0\|\), every solution \(u_j\) of (2.1), (2.2) such that \(\|u_j\| \leq C \alpha^j\) for \(j = -\sigma_p, -\sigma_p + 1, \ldots, 0\), satisfies

\[\|u_j\| \leq \gamma \alpha^j \left(1 - \eta\right)^{1/(m-1)} \|\tau_0\|, \quad j = 0, 1, 2, \ldots. \]

(3.4)

Proof. By inductive arguments, we can prove that the unique solution \(\{u_j\}_{j=-\sigma_p}^{\infty}\) of (2.1), subject to given initial values \(u_0 = \tau_0, u_{-1}, \ldots, u_{-\sigma_p}\), satisfies

\[u_j = \Phi(j, 0) \tau_0 + \sum_{i=0}^{j-1} \Phi(j, i+1) f_i(u_{(i-\sigma_1)}, \ldots, u_{(i-\sigma_p)}), \quad j \in Z^+. \]

(3.5)

Hence, by conditions (2.3) and (2.10),

\[\|u_j\| \leq \gamma \alpha^j \|\tau_0\| + \gamma \sum_{i=0}^{j-1} \sum_{l=1}^{p} \alpha^{j-i} q_l(i) \|u_{i-\sigma_l}\|^m. \]

(3.6)

This yields

\[\alpha^{-j} \|u_j\| \leq \gamma \|\tau_0\| + \gamma \sum_{i=0}^{j-1} \sum_{l=1}^{p} \alpha^{-i} q_l(i) \|u_{i-\sigma_l}\|^m. \]

(3.7)

By setting \(z(j) = \alpha^{-j} \|u_j\|\) and \(\beta_l(i) = \alpha^{(m-1)i-m\sigma_l-1} q_l(i)\), it follows that

\[z(j) \leq C + \gamma \sum_{l=1}^{p} \sum_{i=0}^{j-1} \beta_l(i) z^m(i-\sigma_l), \]

(3.8)

where \(C = \gamma \|\tau_0\|\) and \(z(j) \leq C\) for \(j = -\sigma_p, -\sigma_p + 1, \ldots, 0\).
Case 1. If $0 < m \leq 1$ and $C \leq 1$, then by Theorem 2.1(a) it follows that

\[
 z(j) \leq C^m \prod_{i=0}^{j-1} \left[1 + y \sum_{l=1}^{p} \beta_l(i) \right] \leq C^m \exp \left(y \sum_{i=0}^{\infty} \sum_{l=1}^{p} \beta_l(i) \right),
\]

and the proof of Case 1 is complete.

Case 2. If $m > 1$, proceeding in a similar way to Case 1, we arrive at the inequality (3.8). Hence, by Theorem 2.1(b), it follows that

\[
 z(j) \leq C \left\{ 1 - (m - 1) y C^{m-1} \sum_{i=0}^{j-1} \sum_{l=1}^{p} \beta_l(i) \right\}^{1/(m-1)},
\]

provided that

\[
 1 - (m - 1) y C^{m-1} \sum_{i=0}^{j-1} \sum_{l=1}^{p} \beta_l(i) > 0.
\]

Let $\eta \in (0, 1)$ be an arbitrary number. We will prove that the condition (3.11) holds for all τ_0 satisfying

\[
 ||\tau_0|| \leq \left\{ \frac{\eta}{(m-1)\lambda y^{m}} \right\}^{1/(m-1)} =: R,
\]

where $\lambda = \sum_{i=0}^{\infty} \sum_{l=1}^{p} \beta_l(i) < \infty$.

Indeed, for all such a τ_0, we have

\[
 (m - 1) y^{m} ||\tau_0||^{m-1} \sum_{i=0}^{j-1} \sum_{l=1}^{p} \beta_l(i) \leq (m - 1) y^{m} ||\tau_0||^{m-1} \sum_{i=0}^{\infty} \sum_{l=1}^{p} \beta_l(i) \leq \eta.
\]

Thus,

\[
 1 - (m - 1) y^{m} ||\tau_0||^{m-1} \sum_{i=0}^{j-1} \sum_{l=1}^{p} \beta_l(i) \geq 1 - \eta > 0.
\]

Consequently, for all τ_0 such that $||\tau_0|| \leq R$, we have

\[
 ||u_j|| \leq \frac{C \alpha^j ||\tau_0||}{\left\{ 1 - (m - 1) y C^{m-1} \sum_{i=0}^{j-1} \sum_{l=1}^{p} \beta_l(i) \right\}^{1/(m-1)}} \leq \frac{y \alpha^j}{(1 - \eta)^{1/(m-1)} ||\tau_0||}, \quad j \in \mathbb{Z}^+.
\]

Hence the proof of Case 2 is complete.

Remark 3.2. We want to point out the explicit dependence of the growth constants of the perturbed equation (2.1) upon the growth constants of the unperturbed equation (2.9) and the estimate for the perturbation f. Further, the growth rates obtained here are not necessarily decay rates.
COROLLARY 3.3. Under the assumptions of Theorem 3.1, with \(\alpha \) in the open interval \((0, 1)\), we have

(i) if \(0 < m \leq 1 \) and \(C = \gamma \| \tau_0 \| \leq 1 \), every solution \(u_j \) with sufficiently small initial data tends to zero as \(j \to \infty \),

(ii) if \(m > 1 \) and \(\| \tau_0 \| \leq R \), then the zero solution \(u_j \) of (2.1), (2.2) is asymptotically stable.

Indeed, the inequality \(\| u_j \| \leq \gamma \alpha^j / (1 - \eta) (1 - \eta^{(m - 1)j}) \| \tau_0 \| = K \alpha^j \| \tau_0 \|, \ j \in \mathbb{Z}^+ \), shows that for any \(\varepsilon > 0 \), we can choose a suitable number \(0 < \delta < \min\{R, \varepsilon / K\} \) and a number \(N > 0 \) such that for all \(k > N \) and \(\| \tau_0 \| < \delta \), we have \(\| u_j \| < \varepsilon \).

REMARK 3.4. If \(A_k = A \) is a constant matrix, whose spectral radius is less than 1, then the zero solution of (2.9) is uniformly asymptotically stable. However, this result cannot be extended to nonautonomous equations (see [7, Theorem 4.4.1]).

4. Special cases. If the system (2.9),

\[
 u_{j+1} = A_j u_j,
\]

has slowly varying coefficients, then the condition (2.10) concerning growth of the solutions can be avoided in the case

\[
 \| A_k - A_j \| \leq q_{k-j} \quad (q_k = q_{-k} = \text{const} > 0, \ q_0 = 0; \ j, k = 1, 2, \ldots).
\]

On the other hand, Corduneanu [3] established that for any constant matrix \(A \) there exists a constant \(\Gamma \geq 1 \), independent of the integers \(j = 0, 1, 2, \ldots \) such that

\[
 \| A^j \| \leq \Gamma \rho_j(A), \quad j = 0, 1, \ldots ,
\]

where \(\rho(A) \) is the spectral radius of \(A \).

In particular, if \(A = (a_{ij}) \) is a triangular constant matrix, then \(\Gamma = 1 \).

Consider in \(C^n \) the equation

\[
 u_{j+1} = A_j u_j + g_j, \quad j \in \mathbb{Z}^+,
\]

where \(A_j \ (j = 0, 1, \ldots) \) are \(n \times n \)-complex matrices and \(g_j, u_j \) are vectors in \(C^n \).

THEOREM 4.1. Under condition (4.2), assume that

\[
 \rho_0 = \sup_{l=0,1,\ldots} (\Pi_l \rho(A_l)) < 1,
\]

\[
 S_0(A) = \sum_{k=0}^\infty q_k \rho_0^k < 1,
\]

\[
 S_1(A; g) = \sum_{k=0}^\infty \rho_0^k \| g_k \| < \infty,
\]

where \(A_j \ (j = 0, 1, \ldots) \) are \(n \times n \)-complex matrices and \(g_j, u_j \) are vectors in \(C^n \).
where Γ_l and $\rho(A_l)$ have the same meaning as the quantities in (4.3) referring to A. Then any solution $\{u_j\}_{j=0}^\infty$ of (4.4) satisfies the inequality

$$\sup_{j=1,2,\ldots} \|u_j\| \leq \frac{\rho_0 \|u_0\| + S_1(A; g)}{1 - S_0(A)}. \quad (4.6)$$

Proof. Rewrite (4.4) as

$$u_{j+1} = A_l u_j + g_j \quad (4.7)$$

with a fixed integer l. The variation of parameters formula yields

$$u_{l+1} = A_l^{l+1} u_0 + \sum_{j=0}^{l} A_l^{l-j-1}[(A_j - A_l) u_j + g_j]. \quad (4.8)$$

It follows from (4.2) and (4.3) that

$$\|u_{l+1}\| \leq \rho_0^{l+1} \|u_0\| + \sum_{j=0}^{l} \|A_l^{l-j-1}\|[q_l - j]\|u_j\| + \|g_j\| \leq \rho_0 \|u_0\| + \max_{j=0,1,2,\ldots,l} \|u_j\| \sum_{j=0}^{l} \|A_l^{j}\|[q_l + l\|g_l - j\|] \quad (4.9)$$

Consequently,

$$\max_{j=0,1,2,\ldots,l+1} \|u_j\| \leq \rho_0 \|u_0\| + S_0(A) \cdot \max_{j=1,2,\ldots,l+1} \|u_j\| + S_1(A; g), \quad (4.10)$$

and we infer that

$$\sup_{j=1,2,\ldots} \|u_j\| \leq \frac{\rho_0 \|u_0\| + S_1(A; g)}{1 - S_0(A)}, \quad (4.11)$$

concluding the proof. \(\square\)

Consider the equation

$$u_{j+1} = A_j u_j + f_j(u_j), \quad j = 0,1,2,\ldots. \quad (4.12)$$

Assume that there are constants $\nu, \mu \geq 0$ such that

$$\|f_j(u)\| \leq \nu \|u\| + \mu, \quad j = 0,1,2,\ldots. \quad (4.13)$$

Denote

$$\theta_0 = \frac{\mu}{1 - \rho_0}, \quad \rho_0 = \sup_{l=0,1,\ldots} (\Gamma_l \rho(A_l)). \quad (4.14)$$

Now we are in a position to formulate the next result of this paper.
Theorem 4.2. Under conditions (4.2) and (4.13), assume that

\[\rho_0 < 1, \quad \psi(A; f) = \sum_{j=0}^{\infty} (q_j + \nu) \rho_0^j < 1. \]

(4.15)

Then any solution \(\{u_j\}_{j=0}^{\infty} \) of (4.12) satisfies the inequality

\[\sup_{j=1,2,\ldots} \|u_j\| \leq \frac{\rho_0 \|u_0\| + \theta_0}{1 - \psi(A; f)}. \]

(4.16)

Proof. It can be proved in a similar way to Theorem 4.1, so we will omit the proof.

\[\square \]

Acknowledgments. I thank the referees of this paper for their careful and insightful critique. This research was supported by Fondecyt Chile under Grant 1.030.460 and by Dirección de Investigación, Universidad de Los Lagos.

References

Rigoberto Medina: Departamento de Ciencias Exactas, Universidad de Los Lagos, Casilla 933, Chile

E-mail address: rmedina@ulagos.cl
Mathematical Problems in Engineering

Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com