A UNIFORM ESTIMATE FOR THE RATE OF CONVERGENCE IN THE MULTIDIMENSIONAL CENTRAL LIMIT THEOREM FOR HOMOGENEOUS MARKOV CHAINS

M. GHARIB
Mathematics Department
Faculty of Science, Qatar University
STATE OF QATAR

(Received June 15, 1994 and in revised form January 17, 1995)

ABSTRACT. In this paper a uniform estimate is obtained for the remainder term in the central limit theorem (CLT) for a sequence of random vectors forming a homogeneous Markov chain with arbitrary set of states. The result makes it possible to estimate the rate of convergence in the CLT without assuming the finiteness of the absolute third moment of the transition probabilities. Some consequences are also proved.

KEY WORDS AND PHRASES. Uniform estimate, rate of convergence, Central limit theorem, homogeneous Markov chain.

1991 AMS SUBJECT CLASSIFICATION CODES. 60F05, 60J10.

1. INTRODUCTION.

Let X_1, X_2, \ldots be a homogeneous Markov process with an arbitrary set of states X, defined by the transition probability function $P(\xi, A), \xi \in X, A \in \mathcal{A}_X$ (σ-algebra of subsets of X), and the initial distribution:

$$P(X_1 \in A) = \pi(A), \quad A \in \mathcal{A}_X.$$

Suppose that $P(\cdot, \cdot)$ satisfies the following condition of uniform ergodicity:

$$\sup_{\xi, \eta \in X, A \in \mathcal{A}_X} |P(\xi, A) - P(\eta, A)| = \rho < 1.$$

(1.1)

It is well known that (see [13]) if (1.1) is fulfilled, then a stationary distribution $P(A), A \in \mathcal{A}_X$ exists.

Let

$$f(\xi) = (f_1(\xi), \ldots, f_k(\xi)),$$

where $f_i(\cdot), (i = 1, k)$ are real \mathcal{A}_X-measurable functions defined on X. Without loss of generality, in the next we shall suppose that

$$\int_X f_i(\eta) P(d\eta) = 0, \quad i = 1, k.$$

Suppose that the matrix $\Lambda = \|\sigma_{ij}\|_1^k$, where

$$\sigma_{ij} = E_p[f_i(x_1)f_j(x_{r+1})] + \sum_{r=1}^{\infty} E_p[f_i(x_1)f_j(x_{r+1})] + \sum_{r=1}^{\infty} E_p[f_j(x_1)f_i(x_{r+1})].$$
is positive definite. Let,

\[S_n = \frac{1}{\sqrt{n}} \sum_{r=1}^{n+1} B f(x_r), \quad P_n(A) = P(S_n \in A), \]

\[\Delta_n(A) = P_n(A) - \Phi(A), \quad A \in B^k, \]

where the matrix \(B \) is such that \(B' B = \Lambda^{-1}, \Phi(\cdot) \) is the standard normal measure in \(\mathbb{R}^k \), and \(B^k \) is the class of all Borel sets in \(\mathbb{R}^k \).

In many articles (see for example, [2], [5], [6], [7], and [8]) uniform estimates (in particular, the Berry-Esseen bounds) are obtained for the quantity:

\[\sup_{A \in \mathcal{B}_0^k} |\Delta_n(A)|, \tag{1.2} \]

under the condition that the transition probability function \(P(\cdot, \cdot) \) has a finite absolute moment of order not less than three. (Here \(\mathcal{B}_0^k \) is the class of all convex measurable sets in \(\mathbb{R}^k \).

In the present work a uniform estimate is obtained for (1.2) without assuming the finiteness of:

\[m_3 = \sup_{\xi} \int_X |f(\xi)|^3 P(\xi, d\eta). \]

This estimate extends the results pertaining to the case of the existence of absolute moments for the transition probabilities of order not less than the third for a sequence of random vectors that are either independent and identically distributed \((P(\cdot, \cdot) = P(\cdot) = \pi(\cdot)) \), or linked in a homogeneous Markov chain (see, for example, [1], [19], and [20]).

Some other results, concerning (1.2), are also given.

We introduce the following "truncated" moments:

\[\beta_n = \sup_{\xi} \int_{X_n} |f(\eta)|^3 P(\xi, d\eta) + \sqrt{n} \int_{X_n} |f(\eta)|^2 P(\xi, d\eta), \]

\[\delta_n = \int_X |f(\xi)| P(d\xi) \int_{X_n} |f(\eta)| \| S(\xi, d\eta) \| + \int_{X_n} |f(\xi)| P(d\xi) \int_X |f(\eta)| \| S(\xi, d\eta) \|, \]

\[m_{\nu,1} = \int_{X_n} |f(\xi)| \| \pi(d\xi) \|, \]

and put,

\[L_{\beta_n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{k} \lambda_i^{-3} \sup_{\xi} \int_{X_n} |(\theta, f(\eta))|^3 P(\xi, d\eta) + \sqrt{n} \lambda_i^{-2} \sup_{\xi} \int_{X_n} |(\theta, f(\eta))|^2 P(\xi, d\eta), \]

\[L_{\delta_n} = \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_i \lambda_j \lambda_{i+j}^{-1} \left[\int_X |(\theta, f(\xi))| P(d\xi) \int_{X_n} |(\theta, f(\eta))| \| S(\xi, d\eta) \| + \int_{X_n} |(\theta, f(\xi))| P(d\xi) \int_X |(\theta, f(\eta))| \| S(\xi, d\eta) \| \right], \]

and,

\[L_{\nu,\nu} = \frac{1}{\sqrt{n}} \sum_{r=1}^{k} \lambda_i^{-1} \int_{X_n} |(\theta, f(\xi))| \| \pi(d\xi) \|, \]

where \(\theta, \nu = 1, 2, \ldots, k \) are orthonormal eigenvectors of \(\Lambda \) and \(\lambda_\nu^2 \) are the corresponding eigenvalues,

\[X_n = \{ \xi : |f(\xi)| \leq \sqrt{n} \}, \quad \overline{X}_n = X \setminus X_n, \]

\[|S(\cdot, A)| \] is the complete variation of the measure,
CONVERGENCE IN THE MULTIDIMENSIONAL CENTRAL LIMIT THEOREM

\[S(., A) = \sum_{r=1}^{\infty} (P^r(., A) - P(A)), \quad A \in \mathcal{X} \]

and \(P^r(., .) \) is the transition probability function after \(r \)-steps. The measure \(S(., A), A \in \mathcal{X} \) exists in accordance with condition (1 1)

2. FORMULATION OF THE RESULTS

THEOREM 1. The inequality

\[\sup_{A \in \mathcal{B}^k_0} |\Delta_n(A)| \leq C(k, \rho) \left[L_{\beta_n} + L_{\phi_n} + L_{\tau_n} + \left(\frac{1}{3} + \frac{2}{3} \rho \right)^n \right], \quad (2.1) \]

holds true. Where here and in what follows, \(C(.) \) denote a positive constant, not the same at different places, which depends only on the arguments in the parentheses.

As it is shown in [1], [11], and [15] the expression \(L_{\beta_n} \) characterizes the corresponding result in the case where summation of independent identically distributed random vectors \((p(., .) = p(,) = \pi(.) \) is considered. The expression \(L_{\phi_n} \) characterizes, in some sense, the dependence structure of the random vectors

\[f(x_1), \quad f(x_2), \quad ... \quad (2.2) \]

\((L_{\phi_n} = 0 \text{ for independent identically distributed random vectors})

REMARK. If \(g(x) \) is an increasing function, with positive argument, defined on \(\mathbb{R}^k \), such that \(\frac{x}{g(x)} \) is non-decreasing, and \(\lim_{x \to \infty} g(x) = \infty \), and if

\[m_g = \sup_{\xi \in X} \int_{X} |f(\eta)|^2 g(|f(\eta)|)P(\xi, d\eta) < \infty, \]

then (2.1) remains true, but with the replacement of \((L_{\beta_n} + L_{\phi_n}) \) by \((L_g + Q_g)/g(k \sqrt{n})\), where

\[L_g = \sum_{r=1}^{k} (\lambda_r^{-3} + \lambda_r^{-2}) \sup_{\xi \in X} \int_{X} \left| \left(\theta_r, f(\eta) \right) \right|^2 g\left(|\theta_r, f(\eta)| \right)P(\xi, d\eta), \quad \text{and} \]

\[Q_g = \sum_{k=1}^{k} \sum_{j=1}^{k} \left[\int_{X} \left| \left(\theta_j, f(\xi) \right) \right| d\xi \int_{X} \left| \left(\theta_j, f(\eta) \right) \right| g\left(|\theta_j, f(\eta)| \right) |S(\xi, d\eta)| \right. \]

\[+ \int_{X} \left| \left(\theta_j, f(\xi) \right) \right| g\left(|\theta_j, f(\xi)| \right) |S(\xi, d\eta)| \] \quad \left. \int_{X} \left| \left(\theta_r, f(\eta) \right) \right| |S(\xi, d\eta)| \right]. \]

If \(\pi(.) = p(,) \), then the sequence (2.2) forms a stationary sequence of random vectors and in this case Theorem 1 has the following simple form:

THEOREM 2. If \(\pi(.) = p(,) \), then

\[\sup_{A \in \mathcal{B}^k_0} |\Delta_n(A)| \leq C(k, \rho) \left[L_{\beta_n} + L_{\phi_n} \right] \quad (2.3) \]

Repeating the arguments given in [3], and [4], one can see that the estimate (2.3) has a universal character. In particular, from (2.3) one can derive an analogy of the generalized Berry-Esseen inequality adduced in [12], and [16] for independent random vectors.

The next result follows from Theorem 1.

THEOREM 3. If

\[m_2 = \sup_{\xi \in X} \int_{X} |f(\eta)|^2 P(\xi, d\eta) < \infty, \]

then the CLT holds for the sequence (2.2), i.e. for any initial distribution \(\pi(.) \):
\[
\sup_{A \in B_0^k} |\Delta_n(A)| \to 0 \quad \text{as} \quad n \to \infty.
\]

3. **AUXILIARY RESULTS**

Assume that
\[
\Delta = J \quad (3.1)
\]
where \(J\) is the \(k\)-dimensional unit matrix. Consequently \(B = J\). Assume also that
\[
\frac{\beta_n}{\sqrt{n}} + \delta_n \leq C(k, \rho) \quad (3.2)
\]
Through the proof of Theorem 1, it is shown that assumptions (3.1) and (3.2) do not bound the generality.

Let
\[
f_n(\cdot) = (f_{n1}(\cdot), f_{n2}(\cdot), \ldots, f_{nk}(\cdot))
\]
and
\[
S_n = \frac{1}{\sqrt{n}} \sum_{r=1}^{n+1} f_n(x_r), \quad \Psi_n(t) = E \left[e^{t(s_n)} \right].
\]

Put
\[
|t| = \max(1, |t|), \quad \text{and} \quad T_n = \frac{\sqrt{n}}{50\beta_n},
\]
where
\[
\bar{\beta}_n = 20M^2(\rho)\beta_n, \quad \text{and} \quad M(\rho) = (9 + 12\rho)/(1 - \rho).
\]

LEMMA 3.1. For \(|t| < T_n\)
\[
|\Psi_n(t) - e^{-|t|^2/2}| \leq C(k, \rho) \left[\frac{\beta_n}{\sqrt{n}} + \delta_n \right] \max(|t|, |t|^3) + m_{x,1} \frac{|t|}{\sqrt{n}} e^{-|t|^2/20}
\]
\[
+ C(1) \beta_n \left(\frac{1}{3} + \frac{2}{3} \rho \right)^n \frac{|t|}{\sqrt{n}}.
\]

PROOF. Put
\[
\sigma_{uj}^{(n)} = E_p[f_n(x_1)f_n(x_2)] + \sum_{r=1}^{\infty} E_p[f_n(x_1)f_n(x_{r+1}) - E_p[f_n(x_1)f_n(x_{r+1})]]
\]
\[
+ \sum_{r=1}^{\infty} E_p[f_n(x_1)f_n(x_{r+1}) - E_p[f_n(x_1)f_n(x_{r+1})]].
\]

It is clear that, for \(i = 1, k, r = 1, 2, \ldots\)
\[
E_p[f_n(x_1)] = E_p[f_n(x_{r+1})] \quad (3.3)
\]

Therefore,
\[
|E_p[f_n(x_1)]| = \left| \int_{X_n} f_n(x)P(dx) \right| \leq \frac{\beta_n}{\sqrt{n}}. \quad (3.4)
\]
Similarly, it is easy to see that, for any $i, j = 1, k$

$$|E_p[f_{n_i}(x_1)f_{n_j}(x_1)] - E_p[f_i(x_1)f_j(x_1)]| \leq \frac{\beta_n}{\sqrt{n}}. \quad (3.5)$$

Further, using (3.3), for any i and j

$$|E_p[f_i(x_1)f_j(x_{r+1})] - E_p[f_{n_i}(x_1)f_{n_j}(x_{r+1})] - E_p[f_{n_i}(x_1)]E_p[f_{n_j}(x_{r+1})]| \leq \int_X |f(\xi)|P(d\xi) \int_{X_n} |f(\eta)|V_\pi(\xi, d\eta)$$

$$+ \int_{X_n} |f(\xi)|P(d\xi) \int_X |f(\eta)|V_\pi(\xi, d\eta) \quad (3.6)$$

where $V_\pi(\cdot, \cdot)$ is the complete variation of the measure $(P^{(r)}(\cdot, \cdot) - P(\cdot))$. From (3.4)-(3.6), it follows that

$$|\sigma_{ij}^{(n)} - \delta_{ij}| \leq C(\rho) \left(\frac{\beta_n}{\sqrt{n}} + \delta_n \right) \quad (3.7)$$

where δ_{ij} is the kronker's symbol.

Consider the Θ_X-measurable function

$$f_{t,n}(x) = f_t(x) = (t, f_n(x)), \quad x \in X,$$

and let $m_t = E_p[f_t(x_1)]$,

$$\sigma_t^2 = E_p[(f_t(x_1) - m_t)^2] + 2\sum_{r=1}^{\infty} E_p[f_t(x_1)f_t(x_{r+1})] - m_t^2$$

and

$$\gamma_t^3 = \sup_{\xi \in X} \int_X |f_t(\eta) - m_t|^3 P(\xi, d\eta).$$

It is easy to see that

$$|m_t| \leq \sum_{j=1}^{k} |t_j| E_p[f_{n_j}(x_1)] \leq k|\ell| \frac{\beta_n}{n}, \quad (3.8)$$

and that

$$\sigma_t^2 = (t, \sigma_n t), \quad (3.9)$$

where

$$\sigma_n = \sum_{i,j} \langle \sigma_{ij}^{(n)} \rangle_1^k.$$

It follows from (3.1) and (3.7)-(3.9) that,

$$|\sigma_t^2 - |t|^2| \leq C(k, \rho) \left(\frac{\beta_n}{\sqrt{n}} + \delta_n \right)|t|^2, \quad (3.10)$$

Consider now the sum of one-dimensional random variables

$$\hat{S}_n = \frac{1}{\sigma_t \sqrt{n}} \sum_{r=1}^{n+1} (f_t(x_r) - m_t).$$
and put
\[\Psi_n(\tau) = E(e^{it\bar{S}_n}), \quad T_n = \frac{\sigma_t \sqrt{n}}{100M^3(\rho)\gamma_t^3}. \]

According to the results of \([14]\), we have for \(|\tau| < T_n^-,\]
\[
\left| \Psi_n(\tau) - e^{-\frac{1}{2} \tau^2} \right| \leq \left[\frac{2\gamma_t^3}{\sigma_t^3 \sqrt{n}} (|\tau|^3 + |\tau|) + \frac{m_{11}}{\sigma_t \sqrt{n}} |\tau| \right] e^{-\frac{1}{2} \tau^2} + \frac{2\gamma_t^3}{\sigma_t^3 \sqrt{n}} |\tau| \left(\frac{1}{3} + \frac{2}{3} \rho \right)^n, \tag{3.11}
\]
where
\[m_{11} = \int_X |f_t(\xi)|\pi(d\xi). \]

In accordance with (3.2) and (3.10), we have
\[|\sigma_t^2 - |t|^2| \leq 1/2 |t|^2, \]
and consequently,
\[1/2 \leq \frac{\sigma_t^2}{|t|^2} \leq 3/2, \tag{3.12} \]

As a consequence of (3.8), it is easy to see that
\[\gamma_t^3 \leq 5|t|^3 \beta_n. \tag{3.13} \]

On putting (see \([14]\)) \(\bar{\beta}_n = 20M^3(\rho)\beta_n\), we get from (3.12) and (3.13), that
\[\frac{\sigma_t}{T_n} = \frac{100M^3(\rho)\gamma_t^3}{\sigma_t^3 \sqrt{n}} \leq \frac{50\bar{\beta}_n |t|}{\sqrt{n}} \leq 1, \quad \text{for} \quad |t| \leq \frac{\sqrt{n}}{50\beta_n} = T_n. \]

It is not hard to see that
\[\Psi_n(t) = e^{i\sqrt{n}m_{11}} \Psi_n(\sigma_t). \tag{3.14} \]

From (3.11) and (3.14), on noticing that \(m_{11} \leq |t|m_{x,1}\), and \(\gamma_t^3/\sigma_t^3 \leq 10 \sqrt{2}\), it follows that
\[
\left| \Psi_n(t) - e^{i\sqrt{n}m_{11} - \frac{1}{2} \sigma_t^2} \right| \leq \left[50 \sqrt{3} \frac{\beta_n}{\sqrt{n}} |t|^3 + \frac{|t|}{\sqrt{n}} m_{x,1} \right] e^{-\frac{1}{2} |t|^2} + \frac{50\bar{\beta}_n |t|}{\sqrt{n}} \left(\frac{1}{3} + \frac{2}{3} \rho \right)^n. \tag{3.15}
\]

Further, using (3.8), (3.10), and (3.12), consistent with (3.2), it is easy to see that
\[\left| e^{i\sqrt{n}m_{11} - \frac{1}{2} \sigma_t^2} - e^{-\frac{1}{2} |t|^2} \right| \leq \left[K |t| \frac{\beta_n}{\sqrt{n}} + C(k, \rho) \left(\frac{\beta_n}{\sqrt{n}} + \delta_n \right) |t|^2 \right] e^{-\frac{1}{2} |t|^2}. \tag{3.16} \]

Finally, the assertion of the lemma follows from (3.15) and (3.16).

Through the proof of Theorem 1, we shall need estimates for the derivatives of the characteristic function \(\Psi_n(\cdot)\). Let us fix a direction \(\theta\) and let \(t_\theta\) be the projection onto \(\theta\).

Lemma 3.2. a. For any \(\nu \geq 0\), and for \(|t| \leq C_0(k, \rho)T_n^{1/2}\)
\[
\sup_{\theta} \left| \frac{\partial^\nu}{\partial t_\theta^\nu} \left(\Psi_n(t) - e^{-\frac{1}{2} |t|^2} \right) \right| \leq C(k, \rho, \nu) \left[\left(\frac{\beta_n}{\sqrt{n}} \right)^\nu e^{-\frac{1}{2} |t|^2} \left(\frac{\beta_n}{\sqrt{n}} + m_{x,1} \right)^{\nu} + \frac{m_1}{\sqrt{n}} (1/3 + 2/3 \rho)^n |t| \right],
\]
where
\[\nu^* = \max(2\nu, \nu + 3), \quad m_1 = \sup_{\xi \in \mathcal{X}} \int_X |f(\eta)|P(\xi, d\eta). \]

b. For any \(\nu > 0 \), and for \(|t| \leq T_n \)

\[\sup_{\theta} \left| \frac{\partial^\nu}{\partial t^\nu} \Psi_n(t) \right| \leq c(k, \rho, \nu) \left[n \nu e^{-\frac{3}{2n} |t|^2} + \frac{m_1}{\sqrt{n}} |t| \left(\frac{1}{3} + \frac{2}{3} \rho \right) \right]. \]

The proof of this lemma is easily obtained by repeating, word for word, the arguments of the proof of Lemma 2.1 in [8] with the use of the general spectral theory of linear operators acting in the Banach space of all bounded functions with the uniform norm. Through the proof of part b, Lemma 3 of Chapter 6 in [16] is used.

Let

\[\Delta(A) = \Phi(A) - P(A), \quad A \in B^k, \]

where \(P(.) \) is a distribution function in \(\mathbb{R}^k \). Let \(\eta^{(1)} \) be such a vector that

\[P_1(A) = P(\eta^{(1)} \in A), \quad \text{and} \quad P(|\eta^{(1)}| > h) \leq \chi_1 h^{-1}, \]

where \(\chi_1 = \chi_1(k) \) depends only on \(k \).

For any \(T > 0 \), put

\[\eta^{(T)} = T^{-1} \eta, \quad P_T(A) = P(\eta^{(T)} \in A), \quad \text{and} \quad \Delta_T(A) = (\Delta * P_T)(A) \]

where \(* \) denotes the composition operation.

The following lemma is proved in [18] and [20].

Lemma 3.3. For any \(T > 0 \)

\[\sup_{A \in B^k} |\Delta_n(A)| \leq 2 \sup_{A \in B^k} |\Delta_T(A)| + \frac{12 \sqrt{2}}{\sqrt{2\pi}} \frac{k^3/2}{T}. \]

If \(\eta^{(1)} \) has the distribution with density

\[u(x) = \alpha_{k,r} \left[J_{k/2}(|x|/2r)/|x|^{k/2} \right]^{2r}, \tag{3.17} \]

where \(J_{k/2}(.) \) is the Bessel function of order \(k/2 \), the constant \(\alpha_{k,r} \) is such that \(\int_{\mathbb{R}^k} u(x)dx = 1 \), and \(r \) is a positive integer, then for all \(\nu \leq k + q \)

\[E[|\eta^{(1)}|^\nu] \leq \chi_{\nu}(k, q) < \infty, \quad \text{if} \quad r > 2 + \frac{q - 1}{k + 1}, \tag{3.18} \]

and for \(|t| > 1 \)

\[\int_{\mathbb{R}^k} e^{it\alpha} P_T(d\alpha) = 0. \tag{3.19} \]

4. PROOFS OF THE THEOREMS

Proof of Theorem 1. Let

\[\overline{P}_n(A) = P(\overline{S}_n \in A), \quad \text{and} \quad \overline{\Delta}_n(A) = \overline{P}_n(A) - \Phi(A), \quad A \in B^k. \]

It is not difficult to see that for any \(A \in B^k \)

\[|P_n(A) - \overline{P}_n(A)| \leq \sum_{r=1}^{n+1} P(|f(x_r)| > \sqrt{n}). \tag{4.1} \]
Further

\[P(|f(x_1)| \geq \sqrt{n}) = \int_{X_n} \pi(dx) \leq \frac{m_{x,1}}{\sqrt{n}} \tag{4.2} \]

and for \(\tau \geq 2 \)

\[P(|f(x_\tau)| \geq \sqrt{n}) = \int_X P^{(r-1)}(x, X_n) \pi(dx) \leq \sup_x P^{(r-1)}(x, X_n) \leq \sup_x P(x, X_n) \]

\[\leq \frac{1}{(\sqrt{n})^3} \sqrt{n} \sup_x \int_X |f(\eta)|^2 P(\xi, d\eta) \leq \frac{\beta_n}{(\sqrt{n})^3}. \tag{4.3} \]

It follows from (4.1)-(4.3) that

\[|P_n(A) - \bar{P}_n(A)| \leq \frac{m_{x,1}}{\sqrt{n}} + \frac{\beta_n}{\sqrt{n}}. \tag{4.4} \]

Therefore, for any \(A \in B^k \)

\[|\Delta_n(A)| \leq |\Delta_n(A)| + \frac{m_{x,1}}{\sqrt{n}} + \frac{\beta_n}{\sqrt{n}}. \tag{4.5} \]

Let \(T > 0 \) and \(\bar{\Delta}_{n,T}(A) = (\bar{\Delta}_n * P_T^n)(A) \), where \(P_T^n \) is the distribution with the density defined by (3.17). It follows from Lemma 3.3 that

\[\sup A \in B^k \frac{1}{\sqrt{n}} |\bar{\Delta}_n(A)| \leq 2 \sup A \in B^k \frac{1}{T} |\bar{\Delta}_{n,T}(A)| + \frac{C(k)}{T}. \tag{4.6} \]

Let

\[V_T(t) = E\left[e^{i(t \tau)^T}\right]. \]

Thus, from (3.18) and (3.19), we have \(V_T(t) = 0 \), for \(|t| > T \), and for all \(\nu \leq k + q \)

\[\sup \theta \left| \frac{\partial^{\nu}}{\partial t_\nu^{\nu}} V_T(t) \right| \leq E[|\eta(T)|^\nu] \leq \frac{C(k, \nu)}{T^\nu}. \tag{4.7} \]

Now, we put \(T = T_n \) (defined in Lemma 3.1), and \(q = 1 \). It is clear that the generalized measure \(\bar{\Delta}_{n,T_n} \) with the characteristic function

\[W_n(t) = \left(\Psi_n(t) - e^{-\frac{1}{2}|t|^2}\right)V_T(t) \]

satisfies all the conditions of Lemma 1 in [17]. Hence, from (4.7), for any \(0 < \nu_0 < \infty \), we have

\[\int_{\mathbb{R}^k} \left| \frac{\partial^{\nu_0}}{\partial t_\nu^{\nu_0}} W_n(t) \right| dt \leq C(T_n, \nu_0) \max_{\nu = 0,1, \nu_0} \int_{|t| \leq T_n} \left| \frac{\partial^{\nu}}{\partial t_\nu^{\nu}} \left(\Psi_n(t) - e^{-\frac{1}{2}|t|^2}\right) \right| dt \tag{4.8} \]

where

\[C(T_n, \nu_0) = \sum_{\nu=0}^{\nu_0} \left(\nu \atop \nu_0 \right) C(\nu, k)/T_n^\nu. \]

In accordance with (3.2) it follows from Lemmas 3.1 and 3.2, that for any \(\nu \leq k + 1 \)

\[\sup \theta \int_{|t| \leq T_n} \left| \frac{\partial^{\nu}}{\partial t_\nu^{\nu}} \left(\Psi_n(t) - e^{-\frac{1}{2}|t|^2}\right) \right| dt \leq C(k, \nu, \nu) \left[\frac{\beta_n}{\sqrt{n}} + \delta_n + \frac{m_{x,1}}{\sqrt{n}} + \left(\frac{1}{3} + \frac{2}{3} \rho \right)^n \right]. \tag{4.9} \]

It follows from (4.9), on using Lemma 1 of [17], that
Theorem 1 follows from (4.5), (4.6), and (4.10) if conditions (3.1) and (3.2) are satisfied.

It is clear that the generality of Theorem 1 is not lost by condition (3.2) because in the opposite case the obtained estimate is trivial. Finally the proof that condition (3.1) is nonessential is obtained by repeating, word-for-word, the corresponding part in the proof of Theorem 3, p. 108 in [19].

PROOF OF THEOREM 2. The proof of Theorem 2 goes along the lines of the proof of Theorem 1, where the condition $\pi(\cdot) = P(\cdot)$ is taken into account.

PROOF OF THEOREM 3. It suffices to prove Theorem 3 under the condition $\pi(\cdot) = P(\cdot)$ (the general case reduces to this partial one). By Theorem 1 it suffices to show that

$$L_{\theta_n} + L_{\delta_n} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$

(4.11)

Since $m_2 < \infty$, then

$$\sup_{\xi \in \mathbb{X}} \int_{\mathbb{X}} |(\theta, f(\eta))|^2 P(\xi, d\eta) \rightarrow 0, \quad \text{as} \quad n \rightarrow \infty.$$

(4.11)

It is not hard to see that

$$\frac{1}{\sqrt{n}} \int_{\mathbb{X}} |(\theta, f(\eta))|^3 P(\xi, d\eta) \leq C(k) \left[\frac{1}{\sqrt{n}} \int_{\mathbb{X}} |(\theta, f(\eta))|^2 P(\xi, d\eta) + \int_{\{\eta: |f(\eta)| > \sqrt{n}\}} |(\theta, f(\eta))|^2 P(\xi, d\eta) \right].$$

Hence,

$$L_{\theta_n} \rightarrow 0, \quad \text{as} \quad n \rightarrow \infty.$$

(4.12)

Also, for L_{δ_n}, one can show, using Holder's inequality, that

$$L_{\delta_n} \leq \frac{4}{1-\rho} \sum_{i=1}^{k} \sum_{j=1}^{k} \left\{ \left[\int_{\mathbb{X}} |(\theta, f(\xi))|^2 P(d\xi) \right]^{1/2} \left[\int_{\mathbb{X}} |(\theta, f(\eta))|^2 P(\xi, d\eta) \right]^{1/2} + \left[\int_{\mathbb{X}} |(\theta, f(\xi))|^2 P(d\xi) \right]^{1/2} \left[\int_{\mathbb{X}} |(\theta, f(\eta))|^2 P(\xi, d\eta) \right]^{1/2} \right\}.$$

(4.13)

It is clear from (4.13) that

$$L_{\delta_n} \rightarrow 0, \quad \text{as} \quad n \rightarrow \infty.$$

(4.14)

Finally, from (4.12) and (4.14), we get the assertion of Theorem 3.

REFERENCES

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

- **Manuscript Due**: December 1, 2008
- **First Round of Reviews**: March 1, 2009
- **Publication Date**: June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk