ON SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS OF HIGHER ORDER

KHALIDA INAYAT NOOR

Mathematics Department
P.O. Box 2455, King Saud University
Riyadh 11451, Saudi Arabia

(Received October 30, 1990 and in revised form October 21, 1991)

ABSTRACT. The classes $T_k(\rho)$, $0 < \rho < 1$, $k > 2$, of analytic functions, using the class $V_k(\rho)$ of functions of bounded boundary rotation, are defined and it is shown that the functions in these classes are close-to-convex of higher order. Covering theorem, arc-length result and some radii problems are solved. We also discuss some properties of the class $V_k(\rho)$ including distortion and coefficient results.

1980 AMS SUBJECT CLASSIFICATION. 30C45.

KEY WORDS AND PHRASES: Analytic functions, close-to-convex, univalent, bounded boundary rotation, coefficient, positive real part.

1. THE CLASS $P_k(\rho)$

Let $P_k(\rho)$ be the class of functions $p(z)$ analytic in the unit disc $E = \{z:|z|<1\}$ satisfying the properties $p(0) = 1$ and

$$\int_0^{2\pi} \frac{\text{Re} p(z) - \rho}{1 - \rho} \, d\theta < k\pi, \quad (1.1)$$

where $z = re^{i\theta}$, $k > 2$ and $0 < \rho < 1$. This class has been introduced in [1]. We note that, for $\rho = 0$, we obtain the class P_k defined by Pinchuk [2] and for $\rho = 0$, $k = 2$, we have the class P of functions with positive real part. The case $k = 2$ gives us the class $P(\rho)$ of functions with positive real part greater than ρ.

Also we can write

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + (1 - 2\rho) ze^{-it}}{1 - ze^{-it}} \, d\mu(t), \quad (1.2)$$

where $\mu(t)$ is a function with bounded variation on $[0,2\pi]$ such that

$$\int_0^{2\pi} d\mu(t) = 2$$

and

$$\int_0^{2\pi} |d\mu(t)| < k, \quad (1.3)$$

From (1.1), we have the following.
THEOREM 1.1. Let $p \in P_k(\rho)$. Then
\[p(z) = \left(\frac{k}{4} + \frac{1}{2} \right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_2(z), \]
where $p_i \in P(\rho), i = 1, 2$.

We now prove.

THEOREM 1.2. The class $P_k(\rho)$ is a convex set.

PROOF. Let $H_1, H_2 \in P_k(\rho)$. We shall show that, for $\alpha, \beta > 0$
\[H(z) = \frac{1}{\alpha + \beta} \left[\alpha H_1(z) + \beta H_2(z) \right] \]
begins to $P_k(\rho)$.

From Theorem 1.1, we can write
\[H(z) = \frac{1}{\alpha + \beta} \left[\alpha \left(\frac{k}{4} + \frac{1}{2} \right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_2(z) \right] \]
\[+ \beta \left(\frac{k}{4} + \frac{1}{2} \right) p_3(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_4(z) \]
where $p_i \in P(\rho), i = 1, 2, 3, 4$.

Now, writing $p_i(z) = (1-\rho) h_i(z) + \rho, i=1,2,3,4$, see [3],
we have
\[H(z) - \rho = \left(\frac{k}{4} + \frac{1}{2} \right) \left[\frac{1}{\alpha + \beta} \left(\alpha h_1(z) + \beta h_3(z) \right) \right] - \left(\frac{k}{4} - \frac{1}{2} \right) \left[\frac{1}{\alpha + \beta} \left(\alpha h_2(z) + \beta h_4(z) \right) \right] \]
\[= \left(\frac{k}{4} + \frac{1}{2} \right) f_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) f_2(z), \]
where f_1 and $f_2 \in P$, since P is a convex set, see [2] and this gives us the required result.

THEOREM 1.3. Let $p \in P_k(\rho)$ and be given by
\[p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n. \]
Then

(i) \[\frac{1}{2\pi} \int_{0}^{2\pi} |p(re^{i\theta})|^2 d\theta < \frac{1 + \left(k^2 (1-\rho)^2 - 1 \right) r^2}{1 - r^2} \]
and

(ii) \[\frac{1}{2\pi} \int_{0}^{2\pi} |p'(re^{i\theta})| d\theta < \frac{k(1-\rho)}{1 - r^2} \]

PROOF. (i) Using Parseval's identity, we have
\[\frac{1}{2\pi} \int_{0}^{2\pi} |p(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n} \]
\[= 1 + k^2 (1-\rho)^2 \sum_{n=1}^{\infty} r^{2n} = \frac{1 + \left(k^2 (1-\rho)^2 - 1 \right) r^2}{1 - r^2}, \]
where we have used an easily established sharp result $|c_n| \leq k(1-\rho)$, for all $n > 1$.

(ii) By using Theorem 1.1, we can write

\[p(z) - \rho = \left(\frac{k}{4} + \frac{1}{2} \right) (1-\rho) \eta_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) (1-\rho) \eta_2(z), \]

where \(\eta_1, \eta_2 \in P \).

Therefore,

\[p'(z) = \left(\frac{k}{4} + \frac{1}{2} \right) (1-\rho) \eta_1'(z) - \left(\frac{k}{4} - \frac{1}{2} \right) (1-\rho) \eta_2'(z) \tag{1.4} \]

Now, for all \(h \in P \), we have

\[2w'(z)h'(z) \frac{(1+w(z-\rho))}{2} \]

where \(w(z) \) is a Schwarz function [3], and

\[\frac{1}{2\pi} \int_0^{2\pi} |h'(re^{i\theta})| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \frac{2|w'(re^{i\theta})|}{|1+w(re^{i\theta})|^2} d\theta \leq \frac{2}{1-r^2}. \tag{1.5} \]

Hence, from (1.4) and (1.5), we have

\[\frac{1}{2\pi} \int_0^{2\pi} |p'(re^{i\theta})| d\theta < \frac{k(1-\rho)}{1-r^2}, \]

which is the required result.

From Theorem 1.1 and the properties of the class \(P(\rho) \), we immediately have the following.

THEOREM 1.4. Let \(p \in P(\rho) \). Then

\[\frac{1-k(1-\rho)r + (1-2\rho)r^2}{1-r^2} < \text{Re} p(z) < \frac{1+k(1-\rho)r + (1-2\rho)r^2}{1-r^2} \]

THEOREM 1.5. Let \(pcP_k(\rho) \). Then \(peP \) for \(|z| < r_0 \), where \(r_0 \) is given by

\[r_0 = \frac{2/[k(1-\rho) + \sqrt{k^2(1-\rho)^2 - 4(1-2\rho)}], \rho \neq \frac{1}{2}} {1} \tag{1.6} \]

When \(\rho=0 \), we obtain the results proved in [2].

2. **THE CLASS \(V_k(\rho) \)**

DEFINITION 2.1. Let \(V_k(\rho) \) denote the class of analytic and locally univalent functions \(f \) in \(E \) with normalization \(f(0) = 0, f'(0) = 1 \) and satisfying the condition

\[\frac{(zf'(z))^k}{f'(z)} \in P_k(\rho), \quad 0 < \rho < 1, \quad k > 2 \]

When \(\rho=0 \), we obtain the class \(V_k \) of functions with bounded boundary rotation. The class \(V_k(\rho) \) also generalizes the class \(C(\rho) \) of convex functions of order \(\rho \).

It can easily be seen [1] that \(f \in V_k(\rho) \) if and only if there
exists $F \in V_k$ such that

$$f'(z) = (F'(z))^{1-n} \quad (2.1)$$

In the following, we will study the distortion theorems for the class $V_k(\rho)$. We will use the hypergeometric functions

$$G(a,b;c,z) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n) \Gamma(b+n)}{\Gamma(c+n)} \frac{z^n}{n!}$$

$$= \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_0^1 u^{a-1} (1-u)^{c-a-1} (1-zu)^{-b} du,$$

where $\Re a > 0$ and $\Re(c-a) > 0$. These functions are analytic for $z \in E [4]$. In addition, we define the functions

$$M_1(a,b;c,r) = \frac{2}{a} \left[G(a,b;c,1) - r_1^{-a} G(a,b;c,-r_1) \right]$$

and

$$M_2(a,b;c,r) = \frac{2}{a} \left[G(a,b;c,1) - r_1^{-a} G(a,b;c,-r_1) \right], \quad (2.2)$$

where $r_1 = \frac{1 - r}{1 + r}$.

THEOREM 2.1. Let $f \in V_k(\rho)$. Then, for $|z| = r (0 < r < 1)$, we have

$$M_2(a,b;c,r) < |f(z)| < M_1(a,b;c,r), \quad (2.3)$$

where

$$a = \left\{ \begin{array}{ll}
\left(\frac{k}{2} - 1 \right) (1 - \rho) + 1, \\
2 \rho
\end{array} \right. \quad (2.4)
$$

$$b = 2 \rho$$

$$c = \left(\frac{k}{2} - 1 \right) (1 - \rho) + 2$$

and M_1, M_2 are as defined in (2.2).

This result is sharp.

PROOF. Using (2.1) and the well-known bounds for $|F'(z)|$ with $F \in V_k$, see [2], we have

$$\frac{\left(\frac{k}{2} - 1 \right) (1 - \rho)}{\left(\frac{k}{2} + 1 \right) (1 - \rho)} < |f'(z)| < \frac{\left(\frac{k}{2} - 1 \right) (1 - \rho)}{\left(\frac{k}{2} + 1 \right) (1 - \rho)} \quad (2.5)$$

Let d_r denote the radius of the largest schlicht disk centered at the origin contained in the image of $|z| < r$ under $f(z)$. Then there is a point z_0, $|z_0| = r$, such that $|f(z_0)| = d_r$. The ray from 0 to $f(z_0)$ lies entirely in the image of E and the inverse image of this ray is a curve in $|z| < r$.

Thus

$$d_r = |f(z_0)| = \int_C |f'(z)| \, |dz|$$
Let $\frac{1-t}{1+t} = \xi$. Then $\frac{-2}{(1+t)^2} dt = d\xi$.

So

$$|f(z_o)| > 2^{2\rho-1} \int_0^1 \left(\frac{k}{2} - 1 \right) (1-\rho) \xi^{(1+\xi)^{-2\rho}} d\xi$$

$$= \int_0^1 \frac{|1-|z||}{1+|z|} \left(\frac{k}{2} - 1 \right) (1-\rho) \xi^{(1+\xi)^{-2\rho}} d\xi$$

Put $\frac{1-t}{1+t} = \frac{1-r}{1+r} = r_1$ and $\xi = r_1 u$.

This gives

$$|f(z_o)| > \frac{b-1}{a} \left[G(a, b; c, -1) - \xi G(a, b; c, -r_1) \right]$$

$$= M_2(a, b, c, r),$$

where a, b, c and M_2 are respectively defined by (2.4) and (2.2).

Similarly we can calculate the lower bound for $|f(z)|$ and this establishes our result.

Equality is attained in (2.3) for the function $f_o \in V_k(\rho)$ defined by

$$f'_o(z) = \frac{(1 + \delta_1 z)^{\frac{k}{2}} - 1}{(1 - \delta_2 z)^{\frac{k}{2}} - 1} (1-\rho), \quad |\delta_1| = |\delta_2| = 1 \quad (2.6)$$

We now study the behaviour of the integral transform

$$f_o(z) = \int_0^z (f'(\xi))^a d\xi \quad (2.7)$$

for $f \in V_k(\rho)$.

This problem has been studied for the class of univalent normalized functions in \mathbb{E} and for the close-to-convex functions, see [3]. We have
THEOREM 2.2. Let \(f \in \mathcal{V}_k(\rho), \ 0 < \rho < 1, \ k > 2 \) and let \(a, 0 < a < 1 \) be given. Then \(f \in \mathcal{V}_m \) for \(m < \frac{1}{2}(1-\rho)(k-2)+2 \).

PROOF. From (2.1), we have

\[
f'(z) = (F'(z))^{1-\rho}, \quad F \in \mathcal{V}_k
\]

Now

\[
f'_a(z) = (f'(z))^a = (F'(z))^a(1-\rho)
\]

\[
= \exp \int_{-\pi}^{\pi} -\log (1-\zeta e^{-it}) a(1-\rho) \, dm(t)
\]

\[
= \exp \int_{-\pi}^{\pi} -\log (1-\zeta e^{-it}) \, d\mu(t),
\]

where \(d\mu(t) = a(1-\rho) \, dm(t) + [1 - a(1-\rho)] \, dt \).

Also

\[
\int_{-\pi}^{\pi} d\mu(t) = a(1-\rho) \int_{-\pi}^{\pi} dm(t) + \frac{1-a(1-\rho)}{2} \int_{-\pi}^{\pi} dt = 2,
\]

and

\[
\int_{-\pi}^{\pi} |d\mu(t)| < a(1-\rho) \int_{-\pi}^{\pi} |dm(t)| + \frac{1-a(1-\rho)}{2} \int_{-\pi}^{\pi} dt
\]

\[
< a(1-\rho)k + 2[1 - a(1-\rho)].
\]

Hence the result.

We note that \(f_a \) is univalent for \(a < \frac{2}{(1-\rho)(k-2)} \), since \(\mathcal{V}_m \) consists of univalent functions for \(2 < m < 4 \). Hence \(f_a \) is univalent even if \(f \) is not univalent provided \(a < \frac{2}{(1-\rho)(k-2)} \).

Using the standard technique, we can easily prove the following.

THEOREM 2.3. Let \(g, h \in \mathcal{V}_k(\rho) \) and let \(\alpha > 0, \beta > 0 \) and \(\alpha + \beta < 1 - \rho \). Then

\[
H(z) = \int_0^z (g'(t))^\alpha (h'(t))^\beta \, dt
\]

is convex of order \(\alpha_1 = (1 - \frac{\alpha + \beta}{1-\rho}) \) for \(|z| < r_1 \),

where

\[
r_1 = \frac{1}{2} \left[k - \sqrt{k^2 - 4} \right] \tag{2.8}
\]

The result is sharp when

\[
g'(z) = h'(z) = \left[\frac{(1-z)^{(k_2-1)(1-\rho)}}{(1+z)^{(k_2+1)(1-\rho)}} \right].
\]
We now prove the following.

THEOREM 2.4. Let \(f: f(z) = z + \sum_{n=2}^{\infty} n a_n z^n \in V_k(\rho) \). Then, for all \(n > 3 \),

\[
|a_n| < \left| k^2(1-\rho)^2 + k(1-\rho) \right| z^{-2\rho} \left(\frac{2n}{3} \right)^{(1-\rho)(\frac{k}{2} + 1) - 2}
\]

The function \(f_0 \) defined by (2.6) shows that the exponent \([(1-\rho)(\frac{k}{2} + 1) - 2] \) is best possible.

PROOF. By definition, we have

\[
(zf'(z))' = f'(z) p(z), \quad p \in P_k(\rho).
\]

Set

\[
F(z) = (z(f'(z))')',
\]

\[
= f'(z) \left[p^2(z) + zp'(z) \right].
\]

For \(z = re^{i\theta} \), we have

\[
n^3 |a_n| < \frac{1}{2\pi} \int_0^{2\pi} |f'(z)| |p^2(z) + zp'(z)| \, d\theta
\]

Using (2.5) and theorem 1.3, we obtain

\[
n^3 |a_n| < \frac{1}{r^{n-3}} \frac{(1-\rho)(\frac{k-2}{2})}{(1-\rho)(\frac{k+2}{2})} \left[1 + \frac{[k^2(1-\rho)^2 - 1]r^2 + k(1-\rho)]}{1 - r^2} \right]
\]

\[
= \frac{1}{r^{n-3}} \frac{(1-\rho)(\frac{k-2}{2})}{(1-\rho)(\frac{k+2}{2})+1} \left[1+k(1-\rho) + [k^2(1-\rho)^2 - 1]r^2 \right]
\]

Let \(r = 1 - \frac{3}{n} \), \(n > 3 \). Then

\[
n^3 |a_n| < \left| k^2(1-\rho)^2 + k(1-\rho) \right| e^3 \left(2 - \frac{3}{n} \right) \left(1-\rho\right)(\frac{k-2}{2}) \left(\frac{n}{3} \right) \left(1-\rho\right)(\frac{k+2}{2})+1
\]

\[
= \left| k^2(1-\rho)^2 + k(1-\rho) \right| e^3 \left(\frac{n}{3} \right) \left[(1-\rho)(\frac{k+2}{2}) - 2 \right] \left(2 - \frac{3}{n} \right) \left(1-\rho\right)(\frac{k}{2} - 1) - 1
\]

Thus, for \(n \geq 3 \),

\[
|a_n| < \left| k^2(1-\rho)^2 + k(1-\rho) \right| (2)^{-2\rho} \left(\frac{2n}{3} \right)
\]

THEOREM 2.5. Let \(f \in V_k(\rho), \ \rho \neq \frac{1}{2} \). Then \(f \) maps \(|z| < r_0 \) onto a convex domain where \(r_0 \) is given by (1.6). The function \(f_0 \), defined by (2.6)

shows that this result is sharp.
The proof is straightforward and follows immediately from the definition and Theorem 1.5.

Furthermore it can easily be shown that if $f \in V_k(\rho)$, then f is convex of order ρ for $|z| < r_1$ where r_1 is given by (2.8).

3. THE CLASS $T_k(\rho)$.

A class T_k of analytic functions related with the class V_k has been introduced and studied in [5]. We now define the following.

DEFINITION 3.1. Let f with $f(0) = 0$, $f'(0) = 1$ be analytic in E. Then $f \in T_k(\rho)$, $k > 2$, $0 < \rho < 1$, if there exists a function $g \in V_k(\rho)$ such that

$$\frac{f'(z)}{g'(z)} \in P \text{ for } z \in E.$$

Note that $T_k(0) = T_k$ and $T_2(0)$ is the class of close-to-convex functions.

THEOREM 3.1. Let $f \in T_k(\rho)$. Then

$$|f(z)| > M_2(a+1, b; c+1, r),$$

where $M_2(a, b; c, r)$ is defined by (2.2) and a, b, c are given by (2.4). This result is sharp.

PROOF. Since $f \in T_k(\rho)$, we can write

$$f'(z) = g'(z) h(z), \ g \in V_k(\rho), \ h \in P.$$

It is well-known that for $h \in P$

$$|h(z)| > \frac{1 - |z|}{1 + |z|} \quad (3.1)$$

Thus, using (3.1) and (2.5), we have

$$|f'(z)| > \frac{(1 - |z|)^{k/2 - 1}(1 - \rho) + 1}{(1 + |z|)^{k/2 + 1}(1 - \rho) + 1}$$

Proceeding in the same way as in Theorem 2.1, we obtain the required result.

REMARK 3.1. When $\rho = 0$, $f \in T_k$ and since in this case $b = 0 < 1$, $c = 1 + a - b$, we have $G(a, b; c, -1) = 1$. Letting $r + 1$, with $\rho = 0$, in Theorem 3.1, we see that the image of E under functions f in T_k contains the schlicht disk $|z| < \frac{1}{k+2}$.

We now give a necessary condition for a function f to belong to the class $T_k(\rho)$.

THEOREM 3.2. Let $f \in T_k(\rho)$. Then, with $z = re^{i\theta}$ and $0 < \theta_1 < \theta_2 < 0 < \rho < 1,$
PROOF. We can write
\[f'(z) = (g_1'(z))^{1-\rho} (h_1(z))^{1-\rho}, \text{ for some } g_1 \in V_k, \ h_1 \in P. \]
So
\[f'(z) = (g_1'(z) h_1(z))^{1-\rho} = (f_1'(z))^{1-\rho}, \quad (3.3) \]
for some \(f_1 \in T_k. \)
Hence
\[(zf'(z))' = (1-\rho) \left(\frac{(zf_1'(z))'}{f_1'(z)} \right) + \rho. \]
The required result follows on noting that, for \(0_1 < 0_2, \ f_1 \in T_k \)
\[\oint_{0_1}^{0_2} \frac{(zf_1'(z))'}{f_1'(z)} \, d\theta > -k \frac{\pi}{2}, \text{ see } [5]. \]

REMARK 3.2. In [1], Goodman introduced the class \(K(\beta) \) of normalized
analytic functions which are close-to-convex of order \(\beta > 0 \) and showed that
if \(f \) is analytic in \(E \) and \(f'(z) \neq 0 \), then for \(\beta > 0, \ f \in K(\beta) \)
if for \(z = re^{i\theta} \) and \(0_1 < 0_2 \)
\[\oint_{0_1}^{0_2} \frac{(zf'(z))'}{f'(z)} \, d\theta > -\beta \pi. \]
When \(0 < \beta < 1, \ K(\beta) \) consists of univalent functions, whilst if
\(\beta > 1, \ f \) need not even be finitely-valent.

We note that Theorem 3.2 shows that
\[T_k(\rho) \subseteq K(\frac{k(1-\rho)}{2}). \]
Hence \(T_k(\rho) \) consists entirely of univalent functions if \(2 < k < \frac{2}{1-\rho} \). It
also follows easily from the definition that the class \(T_k(\rho) \) forms a sub-
set of a linear-invariant family of order \(\frac{k(1-\rho)+1}{2} \).

Using the method of Clunie and Pommerenke as modified by Thomas [7],
we can easily prove the following:

THEOREM 3.3. Denote by \(L(r,f) \) the length of the image of the circle
\(|u|=r \) under \(f \) and by \(M(r) = \max |f(re^{i\theta})| \). Then, for \(0 < r < 1, \)
\[L(r) < A(k,\rho) M(r) \log \frac{1}{1-r}, \]
where \(A(k,\rho) \) is a constant depending only on \(k \) and \(\rho \).

Let \(p_{a,1} \) denote the class of functions \(p(z) \) in \(E \) given by
\[p(z) = 1 + c_1 z + c_2 z^2 + \cdots \]

which satisfy the inequality
\[\left| p(z) - \frac{1}{2a} \right| < \frac{1}{2a}, \quad 0 < a < 1 \]

The class \(P_{\alpha,1} \) has been introduced in [8] and it is shown there that, for \(p \in P_{\alpha,1} \), \(|z| = r < 1 \).

\[\frac{|p'(z)|}{|p(z)|} < \frac{(1 + c)}{(1 + cr)(1 - r)}, \quad \text{(3.4)} \]

where \(c = 1 - 2a \)

We now prove the following.

THEOREM 3.4. Let \(g \in V_k(\rho) \) and let \(\frac{f'(z)}{g'(z)} \in P_{\alpha,1} \). Then \(f \) is a convex function of order \(\rho \) for \(|z| < r \) where \(r \in (0,1) \) is the least positive root of the equation

\[(1-\rho)c_3 - [(\rho+c) + ck(1-\rho)]x^2 + [\rho(k-c) - (1+k)]x + (1-\rho) = 0 \]

PROOF. We can write

\[f'(z) = (g'_1(z))^{1-\rho} p(z), \quad g_1 \in V_k, \quad p \in P_{\alpha,1} \]

So

\[\text{Re} \left[\frac{(zf'(z))'}{f'(z)} - \rho \right] > (1-\rho) \text{Re} \left[\frac{(xg'_1(z))'}{g'_1(z)} \right] - \frac{|zp'(z)|}{p(z)} \]

Using Theorem 1.4 with \(\rho = 0 \) and (3.4), we have the required result.

Furthermore, if

\[T(r) = (1-\rho)cr^3 - [(\rho+c) + ck(1-\rho)]r^2 + [\rho(k-c) - (1+k)]r + (1-\rho), \]

then we note that

\[T(0) = (1-\rho) > 0 \]
\[T(1) = -2\rho c - 2\rho - ck(1-\rho) - k(1-\rho) < 0 \]

Thus \(r \in (0,1) \).

COROLLARY 3.1. When \(\alpha = 0, c = 1 \) and \(\rho = 0 \), \(f \in T_k \). Thus \(f \) maps \(|z| < r = \frac{1}{2}(k+2) - \sqrt{k^2 + 4k} \) onto a convex domain and this result is sharp, see [5].

COROLLARY 3.2. When \(\rho = 0, \alpha = \frac{1}{2} \), and then we have \(\frac{|f'(z)|}{g'(z)} = 1 \) for \(g \in V_k \). Then \(f \) is convex for \(|z| < r = \frac{1}{k+1} \). For \(k=4 \), \(V_k \) consists of univalent functions and in this case \(r = \frac{1}{5} \). This result is proved in [8]. For \(\alpha = 0, k = 4 \) and \(\rho = 0 \), we obtain the known result \(r = 3 - 2\sqrt{2} \) of Ratti [9] and when \(k = 2 \), we have the well-known result giving us the radius of convexity for close-to-convex functions.
Finally we have

THEOREM 3.5. Let \(f \in V_k(\rho) \) and let

\[
F(z) = \frac{1}{1+m} z^{1-m} \left| z^m f(z) \right|', \quad m = 1, 2, 3, \ldots
\]

Then \(F \in T_k(\rho) \) for all \(|z| < r_2 \), where, for \((1-2\rho-m) \neq 0, 0 < \rho < 1, \)

\[
r_2 = \frac{2(1+m)}{(1-\rho)k + \sqrt{(1-\rho)^2k^2 - 4(1-2\rho-m)(1+m)}},
\]

The proof is straightforward when we note that

\[
\text{Re} \frac{F'(z)}{f'(z)} = \frac{1}{1+m} \left[\text{Re} \left(\frac{zf'(z)}{f'(z)} \right) + m \right]
\]

and then use theorem 1.4.

ACKNOWLEDGEMENT. The author is grateful to the referee for his valuable comments and suggestions.

REFERENCES

Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk