International Journal of Differential Equations
Volume 2010 (2010), Article ID 508217, 25 pages
Research Article

On the Positivity and Zero Crossings of Solutions of Stochastic Volterra Integrodifferential Equations

Edgeworth Centre for Financial Mathematics, School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland

Received 1 November 2009; Accepted 14 January 2010

Academic Editor: Elena Braverman

Copyright © 2010 John A. D. Appleby. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We consider the zero crossings and positive solutions of scalar nonlinear stochastic Volterra integrodifferential equations of Itô type. In the equations considered, the diffusion coefficient is linear and depends on the current state, and the drift term is a convolution integral which is in some sense mean reverting towards the zero equilibrium. The state dependent restoring force in the integral can be nonlinear. In broad terms, we show that when the restoring force is of linear or lower order in the neighbourhood of the equilibrium, or if the kernel decays more slowly than a critical noise-dependent rate, then there is a zero crossing almost surely. On the other hand, if the kernel decays more rapidly than this critical rate, and the restoring force is globally superlinear, then there is a positive probability that the solution remains of one sign for all time, given a sufficiently small initial condition. Moreover, the probability that the solution remains of one sign tends to unity as the initial condition tends to zero.