Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 297291, 9 pages
Research Article

Acceleration of Early-Photon Fluorescence Molecular Tomography with Graphics Processing Units

1Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
2Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China

Received 20 December 2012; Accepted 2 March 2013

Academic Editor: Wenxiang Cong

Copyright © 2013 Xin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fluorescence molecular tomography (FMT) with early-photons can improve the spatial resolution and fidelity of the reconstructed results. However, its computing scale is always large which limits its applications. In this paper, we introduced an acceleration strategy for the early-photon FMT with graphics processing units (GPUs). According to the procedure, the whole solution of FMT was divided into several modules and the time consumption for each module is studied. In this strategy, two most time consuming modules (Gd and W modules) were accelerated with GPU, respectively, while the other modules remained coded in the Matlab. Several simulation studies with a heterogeneous digital mouse atlas were performed to confirm the performance of the acceleration strategy. The results confirmed the feasibility of the strategy and showed that the processing speed was improved significantly.