Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 791686, 10 pages
Research Article

Therapeutic Vascular Compliance Change May Cause Significant Variation in Coronary Perfusion: A Numerical Study

1Department of Biomedical Engineering, McGill University, Montreal, QC, Canada H3A 2B4
2Department of Cardiovascular Surgery, Montreal Heart Institute, Montreal, QC, Canada H1T 1C8
3Department of Mechanical Engineering, McGill University, Montreal, QC, Canada H3A 0C3
4Department of Chemical Engineering, McGill University, Montreal, QC, Canada H3A 2B2

Received 31 August 2011; Revised 8 November 2011; Accepted 21 November 2011

Academic Editor: Thomas Heldt

Copyright © 2012 S. Nobari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In some pathological conditions like aortic stiffening and calcific aortic stenosis (CAS), the microstructure of the aortic root and the aortic valve leaflets are altered in response to stress resulting in changes in tissue thickness, stiffness, or both. This aortic stiffening and CAS are thought to affect coronary blood flow. The goal of the present paper was to include the flow in the coronary ostia in the previous fluid structure interaction model we have developed and to analyze the effect of diseased tissues (aortic root stiffening and CAS) on coronary perfusion. Results revealed a significant impact on the coronary perfusion due to a moderate increase in the aortic wall stiffness and CAS (increase of the aortic valve leaflets thickness). A marked drop of coronary peak velocity occurred when the values of leaflet thickness and aortic wall stiffness were above a certain threshold, corresponding to a threefold of their normal value. Consequently, mild and prophylactic treatments such as smoking cessation, exercise, or diet, which have been proven to increase the aortic compliance, may significantly improve the coronary perfusion.