Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 383546, 6 pages
Research Article

Simulation of Spread and Control of Lesions in Brain

CSIR Centre for Mathematical Modelling and Computer Simulation (C-MMACS), Bangalore 560017, India

Received 19 September 2011; Accepted 25 October 2011

Academic Editor: Vikas Rai

Copyright © 2012 Krishna Mohan Thamattoor Raman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A simulation model for the spread and control of lesions in the brain is constructed using a planar network (graph) representation for the central nervous system (CNS). The model is inspired by the lesion structures observed in the case of multiple sclerosis (MS), a chronic disease of the CNS. The initial lesion site is at the center of a unit square and spreads outwards based on the success rate in damaging edges (axons) of the network. The damaged edges send out alarm signals which, at appropriate intensity levels, generate programmed cell death. Depending on the extent and timing of the programmed cell death, the lesion may get controlled or aggravated akin to the control of wild fires by burning of peripheral vegetation. The parameter phase space of the model shows smooth transition from uncontrolled situation to controlled situation. The simulations show that the model is capable of generating a wide variety of lesion growth and arrest scenarios.