Journal of Theoretical Medicine
Volume 1 (1997), Issue 1, Pages 25-34

A Mathematical Model of Combined Drug Therapy of HIV Infection

1Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
2Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

Copyright © 1997 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A Mathematical model of the HIV infected human immune system is presented. The model consists of a system of ordinary differential equations for the populations of uninfected CD4+T cells, infected CD4+T cells and free virus in the blood. The model is constructed, and parameters chosen, so that turnover rates and life spans for these populations agree with clinical data. The model is used to simulate chemotherapy treatment of HIV infection. The simulations are based upon preliminary clinical reports of treatment with combinations of antiviral drugs involving standard reverse transcriptase inhibitors and newly developed protease inhibitors. The models incorporate the apperance of drug-resistant viral strains, which is the key limiting factor in the effectiveness of HIV Chemotherapy. The simulations focus upon the timing of treatment initiation.