Advances in Mathematical Physics
Volume 2012 (2012), Article ID 692030, 41 pages
Research Article

Spacetime Deformation-Induced Inertia Effects

Division of Theoretical Astrophysics, Byurakan Astrophysical Observatory, 378433 Byurakan, Armenia

Received 4 March 2012; Revised 18 April 2012; Accepted 22 April 2012

Academic Editor: Giorgio Kaniadakis

Copyright © 2012 Gagik Ter-Kazarian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We construct a toy model of spacetime deformation-induced inertia effects, in which we prescribe to each and every particle individually a new fundamental constituent of hypothetical 2D, so-called master space (MS), subject to certain rules. The MS, embedded in the background 4D-spacetime, is an indispensable companion to the particle of interest, without relation to every other particle. The MS is not measurable directly, but we argue that a deformation (distortion of local internal properties) of MS is the origin of inertia effects that can be observed by us. With this perspective in sight, we construct the alternative relativistic theory of inertia. We go beyond the hypothesis of locality with special emphasis on distortion of MS, which allows to improve essentially the standard metric and other relevant geometrical structures referred to a noninertial frame in Minkowski spacetime for an arbitrary velocities and characteristic acceleration lengths. Despite the totally different and independent physical sources of gravitation and inertia, this approach furnishes justification for the introduction of the weak principle of equivalence (WPE), that is, the universality of free fall. Consequently, we relate the inertia effects to the more general post-Riemannian geometry.