MULTIPLE POSITIVE SOLUTIONS OF SINGULAR DISCRETE p-LAPLACIAN PROBLEMS VIA VARIATIONAL METHODS

RAVI P. AGARWAL, KANISHKA PERERA, AND DONAL O’REGAN

Received 31 March 2005

We obtain multiple positive solutions of singular discrete p-Laplacian problems using variational methods.

1. Introduction

We consider the boundary value problem

$$
-\Delta(p) (\Delta u(k - 1)) = f(k, u(k)), \quad k \in [1, n],
$$

$$
u(k) > 0, \quad k \in [1, n],
$$

$$
u(0) = 0 = u(n + 1),
$$

where n is an integer greater than or equal to 1, $[1, n]$ is the discrete interval $\{1, \ldots, n\}$, $\Delta u(k) = u(k + 1) - u(k)$ is the forward difference operator, $\varphi_p(s) = |s|^{p-2}s$, $1 < p < \infty$, and we only assume that $f \in C([1, n] \times (0, \infty))$ satisfies

$$
a_0(k) \leq f(k, t) \leq a_1(k) t^{-\gamma}, \quad (k, t) \in [1, n] \times (0, t_0)
$$

for some nontrivial functions $a_0, a_1 \geq 0$ and $\gamma, t_0 > 0$, so that it may be singular at $t = 0$ and may change sign.

Let $\lambda_1, \varphi_1 > 0$ be the first eigenvalue and eigenfunction of

$$
-\Delta(p) (\Delta u(k - 1)) = \lambda \varphi_p(u(k)), \quad k \in [1, n],
$$

$$
u(0) = 0 = u(n + 1).
$$

Theorem 1.1. If (1.2) holds and

$$
\limsup_{t \to \infty} \frac{f(k, t)}{t^{p-1}} < \lambda_1, \quad k \in [1, n],
$$

then (1.1) has a solution.
Theorem 1.2. If (1.2) holds and
\[f(k,t_1) \leq 0, \quad k \in [1,n], \]
for some \(t_1 > t_0 \), then (1.1) has a solution \(u_1 < t_1 \). If, in addition,
\[\liminf_{t \to \infty} \frac{f(k,t)}{t^{p-1}} > \lambda_1, \quad k \in [1,n], \]
then there is a second solution \(u_2 > u_1 \).

Example 1.3. Problem (1.1) with \(f(k,t) = t^{-\gamma} + \lambda t^\beta \) has a solution for all \(\gamma > 0 \) and \(\lambda \) (resp., \(\lambda < \lambda_1, \lambda \leq 0 \)) if \(\beta < p-1 \) (resp., \(\beta = p-1, \beta > p-1 \)) by Theorem 1.1.

Example 1.4. Problem (1.1) with \(f(k,t) = t^{-\gamma} + e^t - \lambda \) has two solutions for all \(\gamma > 0 \) and sufficiently large \(\lambda > 0 \) by Theorem 1.2.

Our results seem new even for \(p = 2 \). Other results on discrete \(p \)-Laplacian problems can be found in [1, 2] in the nonsingular case and in [3, 4, 5, 6] in the singular case.

2. Preliminaries

First we recall the weak comparison principle (see, e.g., Jiang et al. [2]).

Lemma 2.1. If
\[-\Delta(\varphi_p(\Delta u(k-1))) \geq -\Delta(\varphi_p(\Delta v(k-1))), \quad k \in [1,n], \]
\[u(0) \geq v(0), \quad u(n+1) \geq v(n+1), \]
then \(u \geq v \).

Next we prove a local comparison result.

Lemma 2.2. If
\[-\Delta(\varphi_p(\Delta u(k-1))) \geq -\Delta(\varphi_p(\Delta v(k-1))), \]
\[u(k) = v(k), \quad u(k+1) \geq v(k+1), \]
then \(u(k \pm 1) = v(k \pm 1) \).

Proof. We have
\[-\varphi_p(\Delta u(k)) + \varphi_p(\Delta u(k-1)) \geq -\varphi_p(\Delta v(k)) + \varphi_p(\Delta v(k-1)), \]
\[\Delta u(k) \geq \Delta v(k), \quad \Delta u(k-1) \leq \Delta v(k-1). \]
Combining with the strict monotonicity of \(\varphi_p \) shows that
\[0 \leq \varphi_p(\Delta u(k)) - \varphi_p(\Delta v(k)) \leq \varphi_p(\Delta u(k-1)) - \varphi_p(\Delta v(k-1)) \leq 0, \]
and hence, the equalities hold in (2.4). \(\square \)
The following strong comparison principle is now immediate.

Lemma 2.3. If
\[
-\Delta(\varphi_p(\Delta u(k-1))) \geq -\Delta(\varphi_p(\Delta v(k-1))), \quad k \in [1,n],
\]
\[
u(0) \geq \nu(0), \quad u(n+1) \geq v(n+1),
\]
then either \(u > v\) in \([1,n]\), or \(u \equiv v\). In particular, if
\[
-\Delta(\varphi_p(\Delta u(k-1))) \geq 0, \quad k \in [1,n],
\]
\[
u(0) \geq 0, \quad u(n+1) \geq 0,
\]
then either \(u > 0\) in \([1,n]\) or \(u \equiv 0\).

Consider the problem
\[
-\Delta(\varphi_p(\Delta u(k-1))) = g(k,u(k)), \quad k \in [1,n],
\]
\[
u(0) = 0 = u(n+1),
\]
where \(g \in C([1,n] \times \mathbb{R})\). The class \(W\) of functions \(u : [0,n+1] \rightarrow \mathbb{R}\) such that \(u(0) = 0 = u(n+1)\) is an \(n\)-dimensional Banach space under the norm
\[
\|u\| = \left(\sum_{k=1}^{n+1} |\Delta u(k-1)|^p \right)^{1/p}.
\]

Define
\[
\Phi_g(u) = \sum_{k=1}^{n+1} \left[\frac{1}{p} |\Delta u(k-1)|^p - G(k,u(k)) \right], \quad u \in W,
\]
where \(G(k,t) = \int_0^t g(k,s)ds\). Then the functional \(\Phi_g\) is \(C^1\) with
\[
(\Phi'_g(u),v) = \sum_{k=1}^{n+1} \left[\varphi_p(\Delta u(k-1)) \Delta v(k-1) - g(k,u(k)) v(k) \right]
\]
\[
= - \sum_{k=1}^n \left[\Delta(\varphi_p(\Delta u(k-1))) + g(k,u(k)) \right] v(k)
\]
(summing by parts), so solutions of (2.8) are precisely the critical points of \(\Phi_g\).

Lemma 2.4. If
\[
\limsup_{|t| \rightarrow \infty} \frac{g(k,t)}{|t|^{p-2}t} < \lambda_1, \quad k \in [1,n],
\]
then \(\Phi_g\) has a global minimizer.
Discrete p-Laplacian problems

Proof. By (2.12), there is a $\lambda \in [0, \lambda_1)$ such that

$$G(k, t) \leq \frac{\lambda}{p} |t|^p + C,$$

where C denotes a generic positive constant. Since

$$\lambda_1 = \min_{u \in W \setminus \{0\}} \frac{\sum_{k=1}^{n+1} |\Delta u(k - 1)|^p}{\sum_{k=1}^{n} |u(k)|^p},$$

then

$$\Phi_g(u) \geq \frac{1}{p} \left(1 - \frac{\lambda}{\lambda_1}\right)\|u\|^p - C\|u\|,$$

so Φ_g is bounded from below and coercive. □

Lemma 2.5. If

$$\liminf_{t \to +\infty} \frac{g(k, t)}{t^{p-1}} > \lambda_1, \quad \lim_{t \to -\infty} \frac{g(k, t)}{|t|^{p-1}} = 0, \quad k \in [1, n],$$

then Φ_g satisfies the Palais-Smale compactness condition (PS): every sequence (u_j) in W such that $\Phi_g(u_j)$ is bounded and $\Phi'_g(u_j) \to 0$ has a convergent subsequence.

Proof. It suffices to show that (u_j) is bounded since W is finite dimensional, so suppose that $\rho_j := \|u_j\| \to \infty$ for some subsequence. We have

$$o(1)\|u_j\| = \langle \Phi'_g(u_j), u_j \rangle \leq -\|u_j\|^p - \sum_{k=1}^{n+1} g(k, -u_j^-(k))u_j^-(k),$$

where $u_j^- = \max\{-u_j, 0\}$ is the negative part of u_j, so it follows from (2.16) that (u_j^-) is bounded. So, for a further subsequence, $\tilde{u}_j := u_j/\rho_j$ converges to some $\tilde{u} \geq 0$ in W with $\|\tilde{u}\| = 1$.

We may assume that for each k, either $(u_j(k))$ is bounded or $u_j(k) \to \infty$. In the former case, $\tilde{u}(k) = 0$ and $g(k, u_j(k))/\rho_j^{p-1} \to 0$, and in the latter case, $g(k, u_j(k)) \geq 0$ for large j by (2.16). So it follows from

$$o(1) = \frac{\langle \Phi'_g(u_j), v \rangle}{\rho_j^{p-1}} = \sum_{k=1}^{n+1} \left[\varphi_p(\Delta \tilde{u}_j(k - 1)) \Delta v(k - 1) - \frac{g(k, u_j(k))}{\rho_j^{p-1}} v(k) \right]$$

that

$$\sum_{k=1}^{n+1} \varphi_p(\Delta \tilde{u}(k - 1)) \Delta v(k - 1) \geq 0 \quad \forall v \geq 0,$$
and hence, $\tilde{u} > 0$ in $[1, n]$ by Lemma 2.3. Then $u_j(k) \to \infty$ for each k, and hence, (2.18) can be written as

$$\sum_{k=1}^{n+1} \left[\varphi_p(\Delta \tilde{u}_j(k-1)) \Delta v(k-1) - \alpha_j(k) \tilde{u}_j(k)^{p-1} v(k) \right] = o(1),$$

(2.20)

where

$$\alpha_j(k) = \frac{g(k, u_j(k))}{u_j(k)^{p-1}} \geq \lambda, \quad j \text{ large},$$

(2.21)

for some $\lambda > \lambda_1$ by (2.16).

Choosing v appropriately and passing to the limit shows that each $\alpha_j(k)$ converges to some $\alpha(k) \geq \lambda$ and

$$-\Delta(\varphi_p(\Delta \tilde{u}(k-1))) = \alpha(k) \tilde{u}(k)^{p-1}, \quad k \in [1, n],$$

$$\tilde{u}(0) = 0 = \tilde{u}(n+1).$$

(2.22)

This implies that the first eigenvalue of the corresponding weighted eigenvalue problem is given by

$$\min_{u \in W \setminus \{0\}} \frac{\sum_{k=1}^{n+1} |\Delta u(k-1)|^p}{\sum_{k=1}^n \alpha(k) |u(k)|^p} = 1.$$

(2.23)

Then

$$1 \leq \frac{\sum_{k=1}^{n+1} |\Delta \varphi_1(k-1)|^p}{\sum_{k=1}^n \alpha(k) \varphi_1(k)^p} \leq \frac{\lambda_1}{\lambda} < 1,$$

(2.24)

a contradiction. \square

3. Proofs

The problem

$$-\Delta(\varphi_p(\Delta u(k-1))) = a_0(k), \quad k \in [1, n],$$

$$u(0) = 0 = u(n+1),$$

(3.1)

has a unique solution $u_0 > 0$ by Lemmas 2.3 and 2.4. Fix $\varepsilon \in (0, 1]$ so small that $u := \varepsilon^{1/(p-1)} u_0 < t_0$. Then

$$-\Delta(\varphi_p(\Delta u(k-1))) - f(k, u(k)) \leq -(1 - \varepsilon)a_0(k) \leq 0$$

(3.2)

by (1.2), so u is a subsolution of (1.1). Let

$$f_u(k, t) = \begin{cases} f(k, t), & t \geq u(k), \\ f(k, u(k)), & t < u(k). \end{cases}$$

(3.3)
Proof of Theorem 1.1. By (1.4), there are \(\lambda \in [0, \lambda_1) \) and \(T > t_0 \) such that
\[
f(k, t) \leq \lambda t^{p-1}, \quad (k, t) \in [1, n] \times (T, \infty). \tag{3.4}
\]
Then
\[
f_u(k, t) \begin{cases}
\leq a_1(k)u(k)^{-r} + \max f([1, n] \times [t_0, T]) + \lambda t^{p-1}, & t \geq 0, \\
\geq a_0(k), & t < 0,
\end{cases} \tag{3.5}
\]
by (1.2), so the modified problem
\[
-\Delta (\varphi_p(\Delta u(k-1))) = f_u(k, u(k)), \quad k \in [1, n],
\]
\[
u(0) = 0 = u(n + 1), \tag{3.6}
\]
has a solution \(u \) by Lemma 2.4. By Lemma 2.1, \(u \geq u_1 \), and hence, also a solution of (1.1). \(\square \)

Proof of Theorem 1.2. Noting that \(t_1 \) is a supersolution of (3.6), let
\[
\tilde{f}_u(k, t) = \begin{cases}
 f_u(k, t_1), & t > t_1, \\
 f_u(k, t), & t \leq t_1.
\end{cases} \tag{3.7}
\]
By (1.2),
\[
\tilde{f}_u(k, t) \begin{cases}
\leq a_1(k)u(k)^{-r} + \max f([1, n] \times [t_0, t_1]), & t \geq 0, \\
\geq a_0(k), & t < 0,
\end{cases} \tag{3.8}
\]
so \(\Phi_{\tilde{f}_u} \) has a global minimizer \(u_1 \) by Lemma 2.4. By Lemmas 2.1 and 2.2, \(u \leq u_1 < t_1 \), so \(\Phi_{\tilde{f}_u} = \Phi_{f_u} \) near \(u_1 \) and hence, \(u_1 \) is a local minimizer of \(\Phi_{f_u} \). Let
\[
f_{u_1}(k, t) = \begin{cases}
f(k, t), & t \geq u_1(k), \\
f(k, u_1(k)), & t < u_1(k),
\end{cases} \tag{3.9}
\]
Since \(u_1 \) is also a subsolution of (1.1), repeating the above argument with \(u_1 \) in place of \(u \), we see that \(\Phi_{f_{u_1}} \) also has a local minimizer, which we assume is \(u_1 \) itself, for otherwise we are done. By (1.6), there are \(\lambda > \lambda_1 \) and \(T > t_1 \) such that
\[
f(k, t) \geq \lambda t^{p-1}, \quad (k, t) \in [1, n] \times (T, \infty), \tag{3.10}
\]
so
\[
\Phi_{f_{u_1}}(t\varphi_1) \leq -\frac{t^p}{p} \left(\frac{\lambda}{\lambda_1} - 1 \right) + Ct < \Phi_{f_{u_1}}(u_1), \quad t > 0 \text{ large.} \tag{3.11}
\]
Since \(\Phi_{f_{u_1}} \) satisfies (PS) by Lemma 2.5, the mountain-pass lemma now gives a second critical point \(u_2 \), which is greater than \(u_1 \) by Lemmas 2.1 and 2.2. \(\square \)
References

Ravi P. Agarwal: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
E-mail address: agarwal@fit.edu

Kanishka Perera: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
E-mail address: kperera@fit.edu

Donal O’Regan: Department of Mathematics, National University of Ireland, Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation
http://www.hindawi.com