We consider a nonlinear problem for the mean curvature equation in the hyperbolic space with a Dirichlet boundary data \(g \). We find solutions in a Sobolev space under appropriate conditions on \(g \).

1. Introduction

Let \(M \) be the open unit ball in \(\mathbb{R}^3 \) of center 0 and let

\[
g_{ij}(x) = \frac{4\delta_{ij}}{(1 - |x|^2)^2}
\]

be the hyperbolic metric on \(M \). Let \(\Omega \subset \mathbb{R}^2 \) be a bounded domain with smooth boundary \(\partial \Omega \in C^{1,1} \), and let \((u,v) \) be the variables in \(\mathbb{R}^2 \). We consider in this paper the Dirichlet problem for a function \(X : \overline{\Omega} \to M \) which satisfies the equation of prescribed mean curvature

\[
\nabla_{X_u} X_u + \nabla_{X_v} X_v = -2H(X)X_u \wedge X_v \quad \text{in } \Omega,
\]

\[
X = g \quad \text{on } \partial \Omega,
\]

where \(H : M \to \mathbb{R} \) is a given continuous function, and \(g \in W^{2,p}(\Omega, \mathbb{R}^3) \) for \(1 < p < \infty \), with \(\|g\|_{\infty} < 1 \).

In the above equation \(X_u, X_v, X_u \wedge X_v : \Omega \to TM \) are the vector fields given by

\[
X_u(u,v) = \frac{3}{X_u} \sum_{k=1}^{3} \frac{\partial X_k}{\partial u} \bigg|_{(u,v)} \frac{\partial}{\partial x_k} X(u,v), \quad X_v(u,v) = \frac{3}{X_v} \sum_{k=1}^{3} \frac{\partial X_k}{\partial v} \bigg|_{(u,v)} \frac{\partial}{\partial x_k} X(u,v),
\]

\[
X_u \wedge X_v(u,v) = \frac{3}{X_u \wedge X_v} \sum_{k=1}^{3} \left(X_u \wedge X_v \right)^k (u,v) \frac{\partial}{\partial x_k} X(u,v),
\]
250 A boundary value problem in the hyperbolic space

where

\[
(X_u \wedge X_v)^1(u,v) = \frac{1}{2} \left(\frac{\partial X_2}{\partial u}(u,v) \frac{\partial X_3}{\partial v}(u,v) - \frac{\partial X_3}{\partial u}(u,v) \frac{\partial X_2}{\partial v}(u,v)\right),
\]

\[
(X_u \wedge X_v)^2(u,v) = \frac{1}{2} \left(\frac{\partial X_3}{\partial u}(u,v) \frac{\partial X_1}{\partial v}(u,v) - \frac{\partial X_1}{\partial u}(u,v) \frac{\partial X_3}{\partial v}(u,v)\right),
\]

\[
(X_u \wedge X_v)^3(u,v) = \frac{1}{2} \left(\frac{\partial X_1}{\partial u}(u,v) \frac{\partial X_2}{\partial v}(u,v) - \frac{\partial X_2}{\partial u}(u,v) \frac{\partial X_1}{\partial v}(u,v)\right),
\]

for \(\phi(x) = \frac{4}{(1 - |x|^2)}^2 \).

We remark that if \(X_u \) and \(X_v \) are linearly independent, then \(X(Z\Omega_1) \subset M \) is an imbedded submanifold and \(X_u \wedge X_v(u,v) \) is the only vector orthogonal to \(X(Z\Omega_1) \) at \(X(u,v) \) that satisfies, for any \(z = \sum_{k=1}^3 z_k(\partial/\partial x_k) \big|_{X(u,v)} \)

\[
\langle z, X_u \wedge X_v(u,v) \rangle = \omega(X(u,v))\langle z, X_u(u,v), X_v(u,v) \rangle.
\]

where \(\omega \) is the volume element of \((M, \langle , \rangle)\), namely

\[
\omega = \sqrt{\det(g_{ij})} dx_1 \wedge dx_2 \wedge dx_3 = \phi^{3/2} dx_1 \wedge dx_2 \wedge dx_3.
\]

If \(\nabla \) is the Levi-Civita connection associated to \(\langle , \rangle \) and \(\Gamma^k_{ij} : M \to \mathbb{R} \) are the Christoffel symbols

\[
\Gamma^k_{ij}(x) = \Gamma^i_{kj}(x) = \frac{2x_j}{1-|x|^2}, \quad \Gamma^k_{ii}(x) = \begin{cases} -\frac{2x_k}{1-|x|^2} & \text{if } k \neq i, \\ 0 & \text{otherwise}. \end{cases}
\]

Let \(E, F, G : \Omega \to \mathbb{R} \) be the coefficients of the first fundamental form, and the unit normal \(N : \Omega \to TM \) be given by

\[
N = \frac{1}{\sqrt{EG-F^2}} X_u \wedge X_v
\]

which is orthogonal to the tangent space \(\{X(\Omega)\}_x \) for any \(x = X(u,v) \). Then, if \(H : \Omega \to \mathbb{R} \) is the mean curvature of \(X(\Omega) \) we obtain

\[
\left(N, \frac{G}{EG-F^2} \nabla_{X_u} X_u + \frac{E}{EG-F^2} \nabla_{X_v} X_v - 2\frac{F}{EG-F^2} \nabla_{X_u} X_v \right) = -2H.
\]

In particular, if \(X \) is isothermal, that is, \(E = G, F = 0 \), then \(\langle \nabla_{X_u} X_u + \nabla_{X_v} X_v, X_u \rangle = 0 = \langle \nabla_{X_u} X_u + \nabla_{X_v} X_v, X_v \rangle \) and consequently

\[
\nabla_{X_u} X_u + \nabla_{X_v} X_v = -2H X_u \wedge X_v.
\]

Thus, (1.11) is the equation of prescribed mean curvature for an imbedded submanifold of \(M \).
2. A Dirichlet problem for (1.11)

With the notations of the previous section, we consider the Dirichlet problem (1.2). The equation of prescribed mean curvature for a surface in \mathbb{R}^3 has been studied for constant H in [3, 5], and for H nonconstant in [1, 2].

Without loss of generality, we may assume that g is harmonic in Ω. Our existence result reads as follows.

Theorem 2.1. Let c_0 and c_1 be some positive constants to be specified. Then (1.2) is solvable for any $g \in W^{2,p}(\Omega, \mathbb{R}^3)$ harmonic such that

$$\|g\|_\infty + 2 \left(c_1 + \sqrt{c_1(c_1 + c_0)} \right) \|\text{grad}(g)\|_p \leq 1. \quad (2.1)$$

In the proof of Theorem 2.1, we ignore the canonical isomorphism $\partial/\partial x_k |_{X(u,v)} \rightarrow e_k$ (with $\{e_k\}$ the usual basis of \mathbb{R}^3), and considering $X_u, X_v \in \mathbb{R}^3$ we may write (1.2) as a system

$$-\Delta X_k = \psi_k(X, X_u, X_v) \quad \text{in } \Omega,$$

$$X_k = g_k \quad \text{on } \partial \Omega \quad (2.2)$$

with $\psi_k(X, X_u, X_v) = 2H(X)(X_u \wedge X_v)^k + \sum_{i,j} \Gamma_{ij}^k(X) \text{grad}(X_i) \text{grad}(X_j), 1 \leq k \leq 3$.

For fixed $\overline{X} \in W^{1,2}_0(\Omega, \mathbb{R}^3)$ such that $\|g + \overline{X}\|_\infty < 1$, we define $X = T\overline{X}$ as the unique solution in $W^{2,p}(\Omega, \mathbb{R}^3) \hookrightarrow W^{1,2}_0(\Omega, \mathbb{R}^3)$ of the linear problem

$$-\Delta X_k = \psi_k \left(\overline{X} + g, (\overline{X} + g)_u, (\overline{X} + g)_v \right) \quad \text{in } \Omega,$$

$$X_k = 0 \quad \text{on } \partial \Omega \quad (2.3)$$

Then, for $B = \{X \in W^{1,2}_0(\Omega, \mathbb{R}^3) \mid \|g + X\|_\infty < 1\}$ the operator $T : B \rightarrow W^{1,2}_0(\Omega, \mathbb{R}^3)$ is well defined and a strong solution of (1.2) in $W^{2,p}$ can be regarded as $Y = g + X$, where X is a fixed point of T. By the usual a priori bounds for the Laplacian and the compactness of the imbedding $W^{2,p}(\Omega, \mathbb{R}^3) \hookrightarrow W^{1,2}_0(\Omega, \mathbb{R}^3)$ we get the following lemma.

Lemma 2.2. $T : B \rightarrow W^{1,2}_0(\Omega, \mathbb{R}^3)$ is continuous. Furthermore, if

$$C_{R_1, R_2} = \{X \in W^{1,2}_0(\Omega, \mathbb{R}^3) \mid \|g + X\|_\infty \leq R_1, \|\text{grad}(X)\|_p \leq R_2\} \quad (2.4)$$

with $R_1 < 1$, then $T(C_{R_1, R_2})$ is precompact.

Proof. For $X = T(\overline{X})$, $Y = T(\overline{Y})$, as $X = Y$ on $\partial \Omega$ we obtain that

$$\|\text{grad}(X_k - Y_k)\|_p \leq c \|\Delta(X_k - Y_k)\|_p$$

$$= c \|\psi_k(\overline{X} + g, (\overline{X} + g)_u, (\overline{X} + g)_v) - \psi_k(\overline{Y} + g, (\overline{Y} + g)_u, (\overline{Y} + g)_v)\|_p \quad (2.5)$$
A boundary value problem in the hyperbolic space and the continuity of T follows. On the other hand, if $X \in C_{R_1, R_2}$, then
\[
\|\nabla (X_k)\|_2^2 \leq c \left\| \nabla (X + g, (X + g)_u, (X + g)_v) \right\|_p \leq \overline{c} (R_2 + \|\nabla (g)\|_2^2)^2
\] (2.6)
for some constant \overline{c} and the result follows. □

Remark 2.3. By definition of ψ_k, it is clear that $c \leq c_1/(1 - R_1)$ for some constant c_1.

Proof of Theorem 2.1. With the notation of the previous lemma, by Schauder fixed point theorem, it suffices to see that C_{R_1, R_2} is T-invariant for some R_1, R_2. From the previous computations, we have
\[
\|\nabla (X)\|_2^2 \leq \frac{c_1}{1 - R_1} (R_2 + \|\nabla (g)\|_2^2)^2.
\] (2.7)
Moreover, by Poincaré’s inequality
\[
\|g + X\|_\infty \leq \|g\|_\infty + c_0 \|\nabla (X)\|_2^2.
\] (2.8)
Thus, a sufficient condition for obtaining $T(C_{R_1, R_2}) \subset C_{R_1, R_2}$ is that
\[
\frac{c_1}{1 - R_1} (R_2 + \|\nabla (g)\|_2^2)^2 \leq R_2, \quad \|g\|_\infty + c_0 R_2 \leq R_1.
\] (2.9)
For R small enough we may fix $R_1 = \|g\|_\infty + c_0 R < 1$, and then the theorem is proved if
\[
c_1 (R + \|\nabla (g)\|_2^2)^2 \leq R (1 - \|g\|_\infty - c_0 R)
\] (2.10)
for some $R > 0$. As last condition is equivalent to our hypothesis, the result holds. □

3. Regularity of the solutions of problem (1.2)

In this section, we state the following regularity result.

Theorem 3.1. Let $X \in W^{1,2p}(\Omega, \mathbb{R}^3)$ be a solution of (1.2). Then
(a) if $g \in W^{2,q}(\Omega, \mathbb{R}^3)$ for some $q > 1$, then $X \in W^{2,q}(\Omega, \mathbb{R}^3)$,
(b) if $\partial \Omega \in C^{k+2,\alpha}$, $H \in C^{k,\alpha}(\mathbb{R}^3, \mathbb{R})$, $g \in C^{k+2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ for some $0 < \alpha < 1$, $\overline{\Omega}$, then $X \in C^{k+2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$.

Proof. (a) Let $\Delta X = f \in L^p$. If $p \geq q$, let Z be the unique solution in $W^{2,q}$ of the problem $\Delta Z = f$, $Z|_{\partial \Omega} = g$. As $\Delta (X - Z) = 0$ and $X = Z$ on $\partial \Omega$ the result follows.
On the other hand, if $p < q$, we obtain in the same way that $X \in W^{2,p}$. For $2 \leq p < q$ this implies that $X \in W^{1,2q}$ and the result follows.

Now we consider the case $p < 2, q$. Let $p_0 = p$ and define
\[
p_{n+1} = \begin{cases}
p_n^*/2 & \text{if } p_n < 2, q, \\
p & \text{otherwise},
\end{cases}
\] (3.1)
where p_n^* is the critical Sobolev exponent $2p_n/(2 - p_n)$. Then $\{p_n\}$ is bounded, and $X \in W^{1,2p_n}$ for every n. If $p_n < 2$, q for every n, then p_n is increasing and taking $r = \lim_{n \to \infty} p_n$, we obtain that $r/(2 - r) = r$, a contradiction. Hence, $p_n \geq q$ or $q > p_n \geq 2$ for some n, and the proof is complete.

(b) Case $k = 0$: by part (a), choosing $q > 2/(1 - \alpha)$ we obtain that $X \in W^{2,q} \hookrightarrow C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^3)$. Then $\Delta X = f \in C^\alpha(\overline{\Omega}, \mathbb{R}^3)$. By [4, Theorem 6.14] the equation $\Delta Z = f$ in Ω, $Z = g$ in $\partial \Omega$ is uniquely solvable in $C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$, and the result follows from the uniqueness in [4, Theorem 9.15].

The general case is now immediate, from [4, Theorem 6.19].

\[\square \]

Acknowledgement

The authors thank Professor Jean-Pierre Gossez and the referee for their fruitful remarks.

References

P. Amster: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria, 1428, Buenos Aires, Argentina

E-mail address: pamster@dm.uba.ar

G. Keilhauer: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria, 1428, Buenos Aires, Argentina

E-mail address: wkeilh@dm.uba.ar

M. C. Mariani: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria, 1428, Buenos Aires, Argentina

E-mail address: mcmarian@dm.uba.ar
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be

Hindawi Publishing Corporation
http://www.hindawi.com