GLOBAL ATTRACTORS FOR TWO-PHASE STEFAN PROBLEMS IN ONE-DIMENSIONAL SPACE

T. AIKI

Abstract. In this paper we consider one-dimensional two-phase Stefan problems for a class of parabolic equations with nonlinear heat source terms and with nonlinear flux conditions on the fixed boundary. Here, both time-dependent and time-independent source terms and boundary conditions are treated. We investigate the large time behavior of solutions to our problems by using the theory for dynamical systems. First, we show the existence of a global attractor \(A \) of autonomous Stefan problem. The main purpose in the present paper is to prove that the set \(A \) attracts all solutions of non-autonomous Stefan problems as time tends to infinity under the assumption that time-dependent data converge to time-independent ones as time goes to infinity.

1. Introduction

Let us consider a two-phase Stefan problem \(SP = SP(\rho; a; b_0, b_1; \beta, g, f_0, f_1, u_0, \ell_0) \) described as follows: Find a function \(u = u(t, x) \) on \(Q(T) = (0, T) \times (0, 1), 0 < T < \infty \), and a curve \(x = \ell(t), 0 < \ell < 1 \), on \([0, T] \) satisfying

\[
\rho(u)_{tt} - a(u_x)_x + \xi + g(u) = \begin{cases} f_0 & \text{in } Q_{\ell}^{(0)}(T), \\ f_1 & \text{in } Q_{\ell}^{(1)}(T), \end{cases}
\]

\[
Q_{\ell}^{(0)}(T) = \{(t, x); 0 < t < T, 0 < x < \ell(t)\},
\]

\[
Q_{\ell}^{(1)}(T) = \{(t, x); 0 < t < T, \ell(t) < x < 1\},
\]

1991 Mathematics Subject Classification. Primary 35K22; secondary 65R35, 35B35.
Key words and phrases. Global attractor, Stefan problem, non-autonomous problem.
Received: May 20, 1997.
\(\xi(t, x) \in \beta(u(t, x)) \quad \text{for a.e. } (t, x) \in Q(T),\)

\[(1.2)\]
\(u(t, \ell(t)) = 0 \quad \text{for } 0 \leq t \leq T,\)

\[(1.3)\]
\(\ell'(t) = -a(u_x)(t, \ell(t)^-) + a(u_x)(t, \ell(t)^+) \quad \text{for a.e. } t \in [0, T],\)

\[(1.4)\]
\(a(u_x)(t, 0+) \in \partial b_0(u(t, 0)) \quad \text{for a.e. } t \in [0, T],\)

\[(1.5)\]
\(-a(u_x)(t, 1-) \in \partial b_1(u(t, 1)) \quad \text{for a.e. } t \in [0, T],\)

\[(1.6)\]
\(u(0, x) = u_0(x) \quad \text{for } x \in [0, 1],\)

\[(1.7)\]
\(\ell(0) = \ell_0,\)

where \(\rho : \mathbb{R} \to \mathbb{R}\) and \(a : \mathbb{R} \to \mathbb{R}\) are continuous increasing functions; \(\beta\) is a maximal monotone graph in \(\mathbb{R} \times \mathbb{R}\); \(g : \mathbb{R} \to \mathbb{R}\) is a Lipschitz continuous function; \(f_i (i = 0, 1)\) is a given function on \((0, \infty) \times (0, 1)\); \(b_i (i = 0, 1)\) is a proper l.s.c. convex function on \(\mathbb{R}\) for each \(t \geq 0\) and \(\partial b_i\) denotes its subdifferential in \(\mathbb{R}\); \(u_0\) is a given initial function and \(\ell_0\) is a number with \(0 < \ell_0 < 1\).

In this paper, we treat a class of nonlinear parabolic equations of the form (1.1), which includes as a typical example,

\[c_i u_t - (|u_x|^{p-2} u_x)_x + \sigma(u) + g(u) \ni f_i, \quad i = 0, 1,\]

for positive constants \(c_0, c_1\) and \(2 \leq p < \infty\), where

\[\sigma(r) = \begin{cases}
1 & \text{for } r > 1, \\
[0, 1] & \text{for } r = 1, \\
0 & \text{for } -1 < r < 1, \\
[-1, 0] & \text{for } r = -1, \\
-1 & \text{for } r < -1,
\end{cases}\]

and

\[g(r) = \begin{cases}
(r - 1) & \text{for } r > 1, \\
r(r + 1)(r - 1) & \text{for } -1 \leq r \leq 1, \\
(r + 1) & \text{for } r < -1.
\end{cases}\]

Also, it should be noticed that boundary condition (1.4) and (1.5) represent various linear or nonlinear boundary conditions (see [1, Section 5] and Remark 2.1 in this paper).

Aiki and Kenmochi already established uniqueness, local existence in time and behavior of solutions for our problem \(SP\) (cf. [7, 1, 2]). In case \(\rho(r) = a(r) = r, \beta \equiv 0\) and \(f_0 \equiv f_1 \equiv 0\) with the boundary condition, \(u(i) = c_i\) for \(i = 0, 1\) where \(c_i\) is some constant, the problem \(SP\) is completely
solved by Mimura, Yamada and Yotsutani in [10, 11, 12]. They showed that there exists a maximal solution \([u^*, \ell^*]\) of the stationary problem, and by comparison principle, if \(u_0 \geq u^*\) and \(\ell_0 \geq \ell^*\), then for the solution \(\{u, \ell\}\), \(u(t)\) and \(\ell(t)\) converge to \(u^*\) and \(\ell^*\), respectively, as time goes to infinity.

In our problem, since \(g\) may not be monotone increasing and data, \(b_i(t) (i = 0, 1)\) and \(f_i(t) (i = 0, 1)\) depend on time variable \(t\), we cannot prove the convergence of the solution. So, in order to consider the large time behavior of solutions we discuss a global attractor for the problem \(SP\). Our main results of the present paper are stated as follows:

(i) (Global existence) \(SP\) has a solution \(\{u, \ell\}\) on \([0, \infty)\) satisfying for \(t \geq 0\)
\[
0 < \inf_{t \geq 0} \ell(t) \leq \sup_{t \geq 0} \ell(t) < 1 \quad \text{and} \quad |u(t)|_{L^2(0,1)} \leq C(|u_0|_{L^2(0,1)} \exp(-\mu t) + 1),
\]
where \(C\) and \(\mu\) are positive constants.

(ii) (Global attractor for the autonomous problem) We put \(SP^* = SP(\rho;a;b_0,b_1;\beta,g,f^*_0,f^*_1,u_0,\ell_0)\) where \(f^*_i \in L^2(0,1)\) and \(b_i\) is a proper l.s.c. convex function on \(R\) for \(i = 0, 1\). Then, there is a global attractor \(A\) for the problem \(SP^*\).

(iii) (Asymptotic behavior of solutions to \(SP\)) We suppose that
\[
b_i \to b_i \quad \text{and} \quad f_i(t) \to f^*_i \quad \text{in some sense as} \quad t \to \infty \quad \text{for} \quad i = 0, 1,
\]
and \(\{u, \ell\}\) is a solution of problem \(SP\). Then, we have
\[
\text{dist}(\{u(t), \ell(t)\}, A) \to 0 \quad \text{as} \quad t \to \infty,
\]
where \(\text{dist}(z, B)\) is an usual distance in \(L^2(0,1) \times R\) between a point \(z \in L^2(0,1) \times R\) and a set \(B \subset L^2(0,1) \times R\).

There are many interesting results dealing with a global attractor of autonomous nonlinear partial differential equations (ex. [16, 9] and etc.). The question concerned with relationship between global attractors of autonomous and non-autonomous problems was earlier discussed by Smiley [14, 15]. Recently, by Ito, Kenmochi and Yamazaki [5] similar results to (iii) were obtained, in which the following non-autonomous problem,
\[
\frac{d}{dt}u(t) + \partial \varphi^t(u(t)) + N(u(t)) \ni f(t), \quad t > 0, \quad \text{in} \quad H,
\]
was considered, where \(H\) is a Hilbert space, \(\varphi^t\) is a proper l.s.c. convex function on \(H\) for \(t > 0\), \(\partial \varphi^t\) is its subdifferential, \(N : H \to H\) is Lipschitz continuous and \(f\) is a given function. They gave a more general answer for that question. But, our system \(SP\) can not be described a single evolution equation of the above form, so that their result is not directly applied to our problem.
The outline of the present paper is as follows. In section 2 we present assumptions and main results. In section 3 we recall known results about problem \(SP \), which are concerned with uniqueness, local existence results in time and energy inequalities. Some uniform estimates for solutions to \(SP \) are obtained in section 4, and then used in section 5 to prove global existence for problem \(SP \) and existence of a global attractor of the semigroup associated to problem \(SP^* \) by applying the theory on dynamical systems in Temam [16]. The asymptotic behavior of solutions to \(SP \) is proved in the final section.

Throughout this paper for simplicity we put

\[
H := L^2(0, 1), X := W^{1,p}(0, 1), 2 \leq p < \infty;
\]

\[
(\cdot, \cdot)_H : \text{the standard inner product in } H;
\]

\[
X_0 := \{z \in X; z(x_0) = 0 \text{ for some } x_0 \in (0, 1)\};
\]

\[
V := \{[z, r] \in H \times (0, 1); z \geq 0 \text{ a.e. on } (0, r), z \leq 0 \text{ a.e. on } (r, 1)\};
\]

\[
dist([u, \ell], [v, m]) := |u - v|_H + |\ell - m| \quad \text{for } [u, \ell], [v, m], z \in V
\]

\[
dist(z, A) := \inf\{dist(z, z'); z' \in A\}
\]

\[
dist(A, B) := \sup\{dist(x, B); x \in A\}
\]

\[
B(M, \delta) := \{(z, r) \in V; |z|_H \leq M, \delta \leq r \leq 1 - \delta\}
\]

for \(M > 0 \) and \(\delta \in (0, 1/2) \).

For a proper l.s.c. convex function \(\psi \) on \(R \), \(D(\psi) := \{r \in R; \psi(r) < \infty\} \). We refer to Brézis [3] for definitions and basic properties concerned with convex analysis.

2. Main results

Let \(p \geq 2 \) and \(1/p' + 1/p = 1 \), and let us begin with the precise assumptions (H1) \~\ (H6) on \(\rho, a, \beta, g, b_i(i = 0, 1) \) and \(f_i(i = 0, 1) \) under which \(SP \) is discussed.

(H1) \(\rho : R \to R \) is bi-Lipschitz continuous and increasing function with \(\rho(0) = 0 \); denote by \(C_\rho \) a common Lipschitz constant of \(\rho \) and \(\rho^{-1} \).

(H2) \(a : R \to R \) is a continuous function such that

\[
a_0|r|^p \leq a(r)r \leq a_1|r|^p \quad \text{for any } r \in R,
\]

\[
a_0(r - r')^{p-1} \leq a(r) - a(r') \quad \text{for any } r, r' \in R \text{ with } r \leq r',
\]

where \(a_0 \) and \(a_1 \) are positive constants.

(H3) \(\beta \) is a maximal monotone graph in \(R \times R \) such that \(\beta(0) \ni 0 \) and

\[
|r'| \leq C_\beta \quad \text{for } r' \in \beta(r) \text{ and } r \in R.
\]
(H4) \(g : R \to R \) is Lipschitz continuous with \(g(0) = 0 \) satisfying the condition that there is a positive constant \(C_g \) such that
\[
g(r)r \geq -C_g \quad \text{and} \quad |g(r) - g(r')| \leq C_g |r - r'| \quad \text{for any} \quad r, r' \in R.
\]

(H5) For \(i = 0, 1 \) and each \(t \geq 0 \), \(b_i^t \) is a proper l.s.c. convex function on \(R \) and there is a positive constant \(d_0 \) such that
\[
D(b_0^t) \subset [d_0, \infty) \quad \text{and} \quad D(b_1^t) \subset (-\infty, -d_0],
\]
and there are absolutely continuous functions \(\alpha_0, \alpha_1 \) on \([0, \infty) \) such that
\[
\alpha_0' \in L^1(0, \infty) \cap L^2(0, \infty) \quad \text{and} \quad \alpha_1' \in L^1(0, \infty),
\]
and for each \(0 \leq s \leq t < \infty \) and each \(r \in D(b_i^t) \) there exists \(r' \in D(b_i^t) \) satisfying
\[
|r' - r| \leq |\alpha_0(t) - \alpha_0(s)|(1 + |r| + |b_i^t(r)|^{1/p}),
\]
\[
b_i^t(r') - b_i^t(r) \leq |\alpha_1(t) - \alpha_1(s)|(1 + |r|^p + |b_i^t(r)|).
\]

Also, we suppose that for \(i = 0, 1 \) there is a function \(k_i \in W^{1, \infty}(0, \infty) \) such that \(b_i^t(k_i(\cdot)) \in L^\infty(0, \infty) \).

Furthermore, we assume that for \(i = 0, 1 \), \(b_i^t \) converges to a proper l.s.c. convex function \(b_i \) on \(R \) as \(t \to \infty \) in the sense of Mosco [13], that is, the following conditions (b1) and (b2) hold:

(b1) If \(w : [0, \infty) \to R \) and \(w(t) \to z \) in \(R \) as \(t \to \infty \), then
\[
\liminf_{t \to \infty} b_i^t(w(t)) \geq b_i(z);
\]

(b2) for each \(z \in D(b_i) \) there is a function \(w : [0, \infty) \to R \) such that \(w(t) \to z \) and \(b_i^t(w(t)) \to b_i(z) \) as \(t \to \infty \).

Remark 2.1. (cf. [1, Section 5]) In the case of Dirichlet or Signorini boundary condition, the following conditions imply the above (H5).

(1) (Dirichlet type).
\[
u(t, i) = q_i(t), \quad t \geq 0 \quad \text{and} \quad i = 0, 1;
\]
this is written in the form (1.4) and (1.5) if \(b_i^t(\cdot) \) is defined by
\[
b_i^t(r) = \begin{cases} 0 & \text{if} \ r = q_i(t), \\ \infty & \text{if} \ r \neq q_i(t). \end{cases}
\]

We suppose that for \(i = 0, 1 \)
\[
(2.1) \quad \begin{cases} (-1)^t q_i(t) \geq d_0 > 0 & \text{for} \ t \geq 0, \\ q_i \in C([0, \infty)) \quad \text{and} \quad q_i' \in L^1(0, \infty) \cap L^2(0, \infty) \cap L^\infty(0, \infty). \end{cases}
\]

Then, condition (H5) holds.
(2) (Signorini type).
\[
\begin{align*}
 u(\cdot, 0) & \geq q_0(\cdot) \quad \text{on } [0, \infty), \\
 u_x(\cdot, 0+) & = 0 \quad \text{on } \{u(\cdot, 0) > q_0(\cdot)\}, \\
 u_x(\cdot, 0+) & \leq 0 \quad \text{on } \{u(\cdot, 0) = q_0(\cdot)\},
\end{align*}
\]
these conditions are represented in the form (1.4) for b_0^i given by
\[
b_0^i(r) = \begin{cases}
 0 & \text{if } r \geq q_0(t), \\
 \infty & \text{otherwise}.
\end{cases}
\]
If $q_0(t)$ satisfies condition (2.1), then condition (H5) holds.

Furthermore we suppose:

(H6) For $i = 0, 1$, $f_i : [0, \infty) \to C([0, 1])$, $(-1)^i f_i \geq 0$ on $[0, \infty) \times [0, 1]$ and $f_{i\ell} \in L^1(0, \infty; H)$.

Now, we give the definition of a solution to SP.

Definition 2.1. We say that a pair $\{u, \ell\}$ is a solution of SP on $[0, T]$, $0 < T < \infty$, if the following properties (S1) \sim (S3) are fulfilled:

(S1) $u \in W^{1,2}_{loc}((0, T]; H) \cap L^\infty(0, T; H) \cap L^\infty_{loc}((0, T]; X) \cap L^p(0, T; X)$, $
\ell \in C([0, T]) \cap W^{1,2}_{loc}((0, T])$ with $0 < \ell < 1$ on $[0, T]$.

(S2) For each $i = 0, 1$ (1.1) holds in the sense of $D'(Q^{\ell}_i(T))$ for some $\xi \in L^2(Q(T))$ with $\xi \in \beta(u(t, x))$ a.e. on $Q(T)$, and (1.2), (1.3), (1.6) and (1.7) are satisfied.

(S3) For $i = 0, 1$, $b^{(i)}_0(u(\cdot, i)) \in L^1(0, T) \cap L^\infty_{loc}((0, T])$, $u(t, i) \in D(\partial b^i_0)$ for a.e. $t \in [0, T]$, and (1.4) and (1.5) hold.

Also, for $0 < T' \leq \infty$, a pair $\{u, \ell\}$ is a solution of SP on $[0, T']$ if it is a solution of SP on $[0, T]$ for every $0 < T < T'$ in the above sense.

Furthermore, $[0, T^*)$, $0 < T^* \leq \infty$ is called the maximal interval of existence of the solution, if the problem has a solution on $[0, T^*)$ and the solution can not be extended in time beyond T^*.

The first main result is concerned with the global existence of a solution to SP.

Theorem 2.1. Assume that conditions (H1) \sim (H6) hold and $[u_0, \ell_0] \in V$. Then, there is one and only one solution $\{u, \ell\}$ of $SP(\rho; a; b^0_0, b^1_0; \beta, g, f_0, f_1, u_0, \ell_0)$ on $[0, \infty)$.

Next, we show uniform estimates for solutions of SP.

Theorem 2.2. Under the same assumptions as in Theorem 2.1, let M be any positive number and $\delta \in (0, 1/2)$ and put
\[
U(M, \delta) := \left\{ [u, \ell] : \begin{array}{l}
\{u, \ell\} \text{ is a solution to } SP(\rho; a; b^0_0, b^1_0; \beta, g, f_0, f_1, u_0, \ell_0) \text{ on } [0, \infty) \text{ for } [u_0, \ell_0] \in B(M, \delta) \\
f_1, u_0, \ell_0 \end{array} \right\}.
\]
Then, there are positive constants M_0, μ_0 and δ_0 such that for any $[u, \ell] \in U(M, \delta)$

\begin{align}
(2.2) \quad |u(t)|_H & \leq M_0(\exp(-\mu_0 t) + 1) \quad \text{for any } t \geq 0, \\
(2.3) \quad \delta_0 & \leq \ell(t) \leq 1 - \delta_0 \quad \text{for any } t \geq 0.
\end{align}

Moreover, for any $t_0 > 0$ there exists a positive number $K(t_0)$ satisfying

\begin{align}
(2.4) \quad |u(t)|_X & \leq K(t_0) \\
& \text{for any } t \geq t_0 \text{ and } [u, \ell] \in U(M, \delta). \\
|b_0^*(u(t, 0))| & \leq K(t_0) \\
|b_1^*(u(t, 1))| & \leq K(t_0)
\end{align}

Next, we consider a global attractor for the autonomous problem SP^*. For this purpose we give some assumptions and notations.

(H5*) For $i = 0, 1$, b_i is a proper l.s.c. convex function on R and there is a positive constant d_0 such that $D(b_0) \subset [d_0, \infty)$ and $D(b_1) \subset (-\infty, -d_0]$.

(H6*) For $i = 0, 1$, $f_i^* \in C([0, 1])$, $(-1)^i f_i^* \geq 0$ on $[0, 1]$.

Corollary 2.1. Under the assumptions (H1) ∼ (H4), (H5*) and (H6*), the problem $SP^*(u_0, \ell_0) := SP(\rho; a; b_0, b_1; \beta, g, f_0^*, f_1^*, u_0, \ell_0)$ has a unique solution $\{u, \ell\}$ on $[0, \infty)$. Obviously, (H5*) and (H6*) imply (H5) and (H6), respectively, and hence Corollary 2.1 is a direct consequence of Theorem 2.1. Here, we define a family of operators $S(t)$, $t \geq 0$, by

$$S(t) : V \to V, S(t)[u_0, \ell_0] = [u(t), \ell(t)] \quad \text{for } t \geq 0 \text{ and all } [u_0, \ell_0] \in V,$$

where $\{u, \ell\}$ is the solution of $SP^*(u_0, \ell_0)$ on $[0, \infty)$. By Corollary 2.1, $\{S(t); t \geq 0\}$ has the usual semigroup property:

$$S(t + s) = S(t) \cdot S(s) \text{ in } V \text{ for any } s, t \geq 0 \text{ and } S(0) = \text{Identity in } V.$$

Theorem 2.3. Suppose that the same assumptions as in Corollary 2.1 hold. Then, for each $t \geq 0$, $S(t)(\cdot)$ is continuous in V, and for any $t_0 > 0$, $M > 0$ and $0 < \delta < 1/2$, $\bigcup_{t \geq t_0} S(t)B(M, \delta)$ is relatively compact in V.

Moreover, there is a global attractor $A \subset V$ for the semigroup $\{S(t); t \geq 0\}$, that is, A is compact in V,

$$S(t)A = A \quad \text{for any } t \geq 0,$$

and for each $M > 0$ and $\delta \in (0, \frac{1}{2})$ we have

$$\text{dist}(S(t)B(M, \delta), A) \to 0 \quad \text{as } t \to \infty.$$
Finally, as to the asymptotic stability of the solution to SP, we prove the following theorem.

Theorem 2.4. Assume that (H1) ~ (H6), (H5*) and (H6*) hold, and $f_i - f_i^* \in L^2(0, \infty; H)(i = 0, 1)$. Then, for any solution $\{u, \ell\}$ of SP,

$$\text{dist}(\{u(t), \ell(t)\}, \mathcal{A}) \to 0 \quad \text{as } t \to \infty,$$

where \mathcal{A} is the global attractor defined by Theorem 2.3.

Moreover, let $M > 0$ and $\delta \in (0, \frac{1}{2})$. Then, for any positive number $\varepsilon > 0$ there is a positive constant $t_0 := t_0(M, \delta, \varepsilon) > 0$ such that

$$\text{dist}(\{u(t), \ell(t)\}, \mathcal{A}) \leq \varepsilon \quad \text{for } t \geq t_0 \text{ and } [u, \ell] \in U(M, \delta),$$

where $\{u, \ell\}$ is a solution of $SP(\rho; a; b^i_0, b^i_1; \beta, g, f_0, f_1, u_0, \ell_0)$ on $[0, \infty)$.

Throughout this paper, we suppose that conditions (H1) ~ (H4) always hold and for simplicity the following notations are used:

$$\hat{\rho}(r) := \int_0^r \rho^{-1}(\tau)d\tau, \hat{\rho}(r) := \hat{\rho}(\rho(r)) \text{ and } \hat{a}(r) := \int_0^r a(s)ds.$$

Since ρ and a satisfy (H1) and (H2), respectively, there are positive constants γ_0, γ_1 and a_2 depending only on C_ρ, a_0, a_1 and p such that

$$\gamma_0|\hat{\rho}(r)|^2 \leq \hat{\rho}(r) \leq \gamma_1|\hat{\rho}(r)|^2 \quad \text{for all } r \in R,$$

(2.5) $|\hat{\rho}(r)|^p \leq a_2\hat{a}(r), \quad \hat{\rho}(r) \leq a_2|\hat{\rho}(r)|^p$ and $|a(r)|^{p'} \leq a_2\hat{a}(r)$ for $r \in R$.

Putting $\hat{\beta}(r) = \int_0^r \hat{\beta}(s)ds$ and $\hat{g}(r) = \int_0^r g(s)ds$, we see that

$$0 \leq \hat{\beta}(r) \leq \frac{C_\beta}{2}r^2 \quad \text{and} \quad |\hat{g}(r)| \leq \frac{C_g}{2}r^2 \quad \text{for any } r \in R.$$

Here, we list some useful inequalities:

(2.6) $|v|_{L^\infty(0,x_0)} \leq |v|_{L^p(0,x_0)} + |v_x|_{L^2(0,x_0)}$ for $v \in W^{1,2}(0,x_0)$,

(2.7) $|v|_{L^\infty(0,x_0)} \leq |v_x|_{L^2(0,x_0)}$ for $v \in W$,

(2.8) $|v|_{L^\infty(0,x_0)} \leq \sqrt{2}|v_x|_{L^2(0,x_0)}^{1/2}|v|_{L^2(0,x_0)}^{1/2}$ for $v \in W$,

where $x_0 \in (0, 1)$ and $r \geq 1$ and $W = \{v \in W^{1,2}(0,x_0); v(x_0) = 0\}$.

3. Preliminaries and known results

First, in this section we recall the results in Aiki-Kenmochi [7, 1, 2] on the local existence, uniqueness and estimates for solutions of SP which are given as follows.

Theorem 3.1. (cf. [2, Theorem 1.1] and [7, Theorem]) Under the same assumptions as in Theorem 2.1, for some positive number T, SP has
a solution \(\{u, \ell\} \) on \([0, T]\) such that
\[
\begin{align*}
t^{1/2}u_t &\in L^2(0, T; H), t^{1/p}u \in L^\infty(0, T; X), t^{2/(\nu+2)}\ell^t \in L^{\nu+2}(0, T), \\
 tb^{1}_i(u(t, i)) &\in L^\infty(0, T), i = 0, 1.
\end{align*}
\]

Lemma 3.1. (cf. [2, Theorem 1.4]) Suppose that all the assumptions of Theorem 2.1 hold. Let \(\{u, \ell\} \) be a solution of SP on \([0, T]\). Further, assume that for some positive number \(\delta, \delta \leq \ell \leq 1 - \delta \) on \([0, T]\). Then, there is a positive constant \(m_1 \) depending only on \(\delta, \rho, a \) and \(p \) such that for \(0 < s \leq t \leq T \)
\[
\int_s^t |\ell'(\tau)|^{\nu+2}d\tau
\]
(3.1) \leq m_1(t - s)|u|^{3p-2}_{L^\infty(s,t;X)} + m_1|u|^p_{L^\infty(s,t;X)} \int_s^t (|u_\tau|^2_H + |\xi|^2_H + |g(u)|^2_H + |f_0|^2_H + |f_1|^2_H) d\tau,
and, moreover,
\[
\int_s^t (\tau - s)^2 |\ell'(\tau)|^{\nu+2}d\tau
\]
(3.2) \leq m_1(\tau - s)^{1/p}|u|^{3p-2}_{L^\infty(s,t;X)} \times
\int_s^t (\tau - s)(|u_\tau|^2_H + |\xi|^2_H + |g(u)|^2_H + |f_0|^2_H + |f_1|^2_H) d\tau
+ m_1(t - s)^{2/p}(\tau - s)^{1/p}|u|^{3p-2}_{L^\infty(s,t;X)} \quad \text{for } 0 \leq s \leq t \leq T.

The next lemma is concerned with the boundary conditions.

Lemma 3.2. (cf. [4, Lemma 1] and [6, Section 1.5]) For \(i = 0, 1 \), assume that \(b_i^t \) satisfies (H5). Then, there is a positive number \(B_1 \) such that
\[
\begin{align*}
b_1^t(r) &+ B_1|r| + B_1 \geq 0 \\
b_1^t(r) &+ B_1|r|^p + B_1 \geq 0
\end{align*}
\]
for all \(r \in R, t \geq 0 \) and \(i = 0, 1 \).

For simplicity of notations we put
\[
\begin{align*}
E(t, z) &= \int_0^1 \hat{a}(z_x)dx + b_0'(z(0)) + b_1'(z(1)), \\
F(t, z) &= B_0\{b_0'(z(0)) + b_1'(z(1)) + B_1(|z(0)|^p + |z(1)|^p + 2)\}
\end{align*}
\]
for \(t \geq 0 \) and \(z \in X \),
where \(B_0 \) and \(B_1 \) are positive constants defined in Lemma 3.2.

According to Lemma 3.2, (2.5), (2.7) and (2.8) it is easy to get the following inequalities:
Proposition 4.1. There are positive constants \(\mu, B_2 \) and \(B_3 \) depending only on \(B_1 \) and \(a_2 \) such that
\[
\begin{align*}
\int_0^1 \dot{a}(x)dx & \leq 2E(t, z) + B_2, \\
\mu |z|^2_H & \leq E(t, z) + B_2, \\
(3.3) \quad |z|_{L^\infty(0, 1)} & \leq B_3(E(t, z) + B_2), \\
0 & \leq F(t, z) \leq B_0(E(t, z) + B_2 + |z|^2_H), \\
|b_i(z)| & \leq B_3(E(t, z) + B_2), \quad (i = 0, 1)
\end{align*}
\]
for \(z \in X_0 \) and \(t \geq 0 \).

Now, we show the useful energy inequality:

Proposition 3.1. (cf. [2, Section 3]) Suppose that the same assumptions as in Theorem 2.1 hold. Let \(\{u, \ell\} \) be a solution of \(SP \) on \([0, T], 0 < T < \infty \). Then, the function \(t \rightarrow E(t, u(t)) \) is of bounded variation on \([s, T] \) for any \(s \in (0, T] \) and
\[
E(t, u(t)) - E(s, u(s)) \leq \int_s^t \frac{d}{d\tau} E(\tau, u(\tau))d\tau \quad \text{for any } 0 < s \leq t \leq T,
\]
and
\[
\frac{d}{dt} E(t, u(t)) + \frac{1}{C_\rho} |u_t(t)|^2_H \\
\leq |a'_0(t)|||a(u_x)(t, 0^+) + a(u_x)(t, 1^-)||F(t, u(t))^{1/p} \\
+ |a'_1(t)|F(t, u(t)) - (\xi(t), u_t(t))_H - (g(u(t), u_t(t))_H \\
+ (f_0(t), u_t(t))_H + (f_1(t), u_t(t))_H \quad \text{for a.e. } t \in [0, T].
\]

We can prove this proposition in ways similar to those of [2, section 3] with the help of Lemma 3.2, so we omit its proof.

4. Uniform estimates

We use the same notation as in the previous section and prove the following propositions in similar ways to those of [2, Section 3]. In this section we assume that all the assumptions of Theorem 2.1 hold and \(\{u, \ell\} \) is a solution of \(SP \) on \([0, T], 0 < T < \infty \).

Proposition 4.1. There are positive constants \(C_1 \) and \(\mu_1 \) depending only on \(\rho, a, \beta, g, f_0, f_1, b_0 \) and \(b_1 \) (independent of \(T, u_0 \) and \(\ell_0 \)) such that
\[
(4.1) \quad |u(t)|_H \leq C_1\left\{|u_0|_H \exp(-\mu_1 t) + 1\right\} \quad \text{for any } t \in [0, T],
\]
and, for any \(0 \leq s \leq t \leq T \),
\[
\begin{align*}
&\int_0^1 \{\dot{\rho}(u)(t) - k(t)\rho(u)(t)\}dx + \mu_1 \int_s^t E(\tau, u(\tau))d\tau \\
&\leq C_1\{(t - s) + 1\} + \int_0^1 (\dot{\rho}(u)(s) - k(s)\rho(u)(s))dx,
\end{align*}
\]
where \(k(t, x) = (1 - x)k_0(t) + xk_1(t) \) for \((t, x) \in [0, \infty) \times [0, 1]\).

Proof. First, we observe that, for a.e. \(t \in [0, T] \),

\[
(\rho(u)_t(t), u(t) - k(t))_H = \frac{d}{dt} \int_0^1 \hat{\rho}(u)(t)dx + (\rho(u)(t), k_t(t))_H - \frac{d}{dt}(\rho(u)(t), k(t))_H.
\]

On the other hand, by integration by parts we obtain that, for a.e. \(t \in [0, T] \),

\[
(\rho(u)_t(t), u(t) - k(t))_H = \int_0^{\ell(t)} (a(u_x)_x - \xi - g(u) + f_0)(u - k) \, dx + \int_0^{\ell(t)} (a(u_x)_x - \xi - g(u) + f_1)(u - k) \, dx
\]

\[
\leq -E(t, u(t)) + E(t, k(t)) + \ell'(t)k(t, \ell(t))
\]

\[
+ \int_0^{\ell(t)} (\hat{\beta}(k) - \hat{\beta}(u)) \, dx - \int_0^{\ell(t)} g(u)(u - k) \, dx
\]

\[
+ \int_0^{\ell(t)} f_0(u - k) \, dx + \int_0^{\ell(t)} f_1(u - k) \, dx.
\]

Here, we note that, for a.e. \(t \in [0, T] \),

\[
\ell'(t)k(t, \ell(t)) = \ell'(t)k_0(t) - \ell'(t)\ell(t)k_0(t) + \ell'(t)\ell(t)k_1(t)
\]

\[
= \frac{d}{dt} L(t) - \ell(t)k'_0(t) - \frac{1}{2} \ell^2(t)(k'_1(t) - k'_0(t))
\]

\[
\leq \frac{d}{dt} L(t) + 2(|k'_0(t)| + |k'_1(t)|),
\]

where \(L(t) = \ell(t)k_0(t) + \frac{1}{2} \ell^2(t)(k_1(t) - k_0(t)) \);

\[
E(t, u(t)) + \int_0^{\ell(t)} \hat{\beta}(u) \, dx + (g(u), u)_H
\]

\[
\geq \frac{1}{2} E(t, u(t)) + \mu |u(t)|^2_H - \frac{B_2}{2} - C_g;
\]

\[
\int_0^{\ell(t)} \hat{\beta}(k) \, dx + (g(u), k)_H
\]

\[
\leq \frac{C_\beta}{2} |k(t)|^2_{L^\infty(0, 1)} + \frac{\mu}{8} |u(t)|^2_H + \frac{2C_\beta^2}{\mu} |k(t)|^2_{L^\infty(0, 1)};
\]

\[
\int_0^{\ell(t)} f_0(u - k) \, dx + \int_0^{\ell(t)} f_1(u - k) \, dx
\]

\[
\leq \frac{\mu}{8} |u(t)|^2_H + (\frac{2}{\mu} + \frac{1}{2})(|f_0(t)|^2_H + |f_1(t)|^2_H) + |k(t)|^2_{L^\infty(0, 1)}.
\]
From (4.3) ~ (4.8) it follows that
\[
\frac{d}{dt} \int_0^1 \hat{\rho}(u)(t)dx + \frac{\mu}{8\gamma_1} \int_0^1 \hat{\rho}(u)(t)dx + \frac{1}{2} E(t, u(t)) \leq C_2 + \frac{d}{dt} L(t) + \frac{d}{dt} (\rho(u)(t), k(t))_H \quad \text{for a.e. } t \in [0, T],
\]
where \(C_2 \) is a positive constant depending only on given data.

Moreover, with \(\mu_2 = \frac{\mu}{16\gamma_1} \) we see that for a.e. \(t \in [0, T] \)
\[
\frac{d}{dt} (\rho(u)(t), k(t))_H \\
\leq \frac{d}{dt} (\rho(u)(t), k(t))_H + \mu_2 (\rho(u)(t), k(t))_H + \mu_2 |\rho(u)(t)|_H |k(t)|_H \\
\leq \frac{d}{dt} (\rho(u)(t), k(t))_H + \mu_2 (\rho(u)(t), k(t))_H \\
+ \mu_2 \int_0^1 \hat{\rho}(u)(t)dx + \frac{C_2^2}{4\gamma_1 \mu_2} |k(t)|_H^2;
\]
\[
\frac{d}{dt} L(t) \leq \frac{d}{dt} L(t) + \mu_2 L(t) + \mu_2 |L(t)|.
\]
Therefore, we infer together with (3.3) that for a.e. \(t \in [0, T] \)
\[
\frac{d}{dt} \int_0^1 \hat{\rho}(u)(t)dx + \mu_2 \int_0^1 \hat{\rho}(u)(t)dx \\
\leq C_3 + \frac{d}{dt} L(t) + \mu_2 L(t) + \frac{d}{dt} (\rho(u)(t), k(t))_H + \mu_2 (\rho(u)(t), k(t))_H
\]
where \(C_3 \) is a positive constant independent of \(T \) and \(|u_0|_H \).

Hence, multiplying the above inequality by \(\exp(\mu_2 t) \), we conclude that for a.e. \(t \in [0, T] \)
\[
\frac{d}{dt} \left\{ \exp(\mu_2 t) \int_0^1 \hat{\rho}(u)(t)dx \right\} \\
\leq C_3 \exp(\mu_2 t) + \frac{d}{dt} \left\{ \exp(\mu_2 t) L(t) \right\} + \frac{d}{dt} \left\{ \exp(\mu_2 t) (\rho(u)(t), k(t))_H \right\}
\]
so that
\[
\int_0^1 \hat{\rho}(u)(t)dx \\
\leq \frac{C_3}{\mu_2} + \left\{ \int_0^1 \hat{\rho}(u_0)dx - (\rho(u_0), k(0))_H - L(0) \right\} \exp(-\mu_2 t) \\
+ (\rho(u)(t), k(t))_H + L(t) \quad \text{for any } t \in [0, T].
\]
Thus, we get the assertion (4.1).

Integrating (4.9) over \([s, t_1]\) for \(0 < s \leq t_1 \leq T \), (4.2) is obtained, since \(\hat{\rho} \) is nonnegative. \(\blacksquare \)
Proposition 4.2. There is a positive constant \(C_1 \), independent of \(T, u_0 \) and \(t_0 \), such that the following inequality holds: For a.e. \(t \in [0, T] \),

\[
\frac{1}{2C_p} |u_t(t)|^2_H + \frac{d}{dt} E(t, u(t)) + \frac{d}{dt} G_1(t) \\
\leq \alpha(t) \left(1 + |u(t)|_H \right) (E(t, u(t)) + |u(t)|^p_H + B_2 + 1) + G_2(t)|u(t)|_H,
\]

where

\[
\alpha(t) = C_1(|\alpha'_0(t)| + |\alpha'_0(t)|^2 + |\alpha'_1(t)|),
\]

\[
G_1(t) = \int_0^1 \left(\beta(u)(t) + \dot{g}(u)(t) \right) dx - (\int_0^t f_0(t) u(t) dx + \int_{\ell(t)}^1 f_1(t) u(t) dx)
\]

and

\[
G_2(t) = |f_0(t)|_H + |f_1(t)|_H.
\]

Proof. It follows from Proposition 3.1 that

\[
\frac{d}{dt} E(t, u(t)) + \frac{1}{C_p} |u_t(t)|^2_H \\
\leq |\alpha'_0(t)|(|a(u_x)(t, 0^+)| + |a(u_x)(t, 1^-)|) F(t, u(t))^{1/p}
\]

\[
+ |\alpha'_1(t)| F(t, u(t)) - (\xi(t), u_t(t))_H - (g(u(t), u_t(t))_H
\]

\[
+ (f_0(t), u_t(t))_H + (f_1(t), u_t(t))_H \quad \text{for a.e. } t \in [0, T].
\]

We see that, for a.e. \(t \in [0, T] \),

\[
(\xi(t), u_t(t))_H + (g(u(t), u_t(t))_H
\]

\[
= \frac{d}{dt} \left(\int_0^1 \beta(u)(t) dx + \int_0^1 \dot{g}(u)(t) dx \right);
\]

\[
(f_0(t), u_t(t))_H + (f_1(t), u_t(t))_H
\]

\[
\leq \frac{d}{dt} \left(\int_{\ell(t)}^t f_0(t) u(t) dx + \int_{\ell(t)}^1 f_1(t) u(t) dx \right) + G_2(t)|u(t)|_H.
\]

Also, by (2.6), (2.5) and Lemma 3.3 we have

\[
|\alpha'_0(t)|(|a(u_x)(t, 0^+)| + |a(u_x)(t, 1^-)|) F(t, u(t))^{1/p}
\]

\[
\leq 2|\alpha'_0(t)| F(t, u(t))^{1/p} \left(|a(u_x)(t)|_{L^{p'}}(0, 1)
\]

\[
+ |a(u_x)(t)|_{L^2(0, \ell(t))} + |a(u_x)(t)|_{L^2(\ell(t), 1)} \right)
\]

\[
\leq 4|\alpha'_0(t)| F(t, u(t))^{1/p} (2E(t, u(t)) + B_2)^{1/p'}
\]

\[
+ 4|\alpha'_0(t)| F(t, u(t))^{1/p} (|\xi(t)|_H + C_\rho|u(t)|_H
\]

\[
+ |f_0(t)|_H + |f_1(t)|_H
\]

\[
+ \frac{1}{2C_p} |u_t(t)|^2_H + 8C_\rho^3|\alpha'_0(t)|^2 F(t, u(t))^{2/p'}, \quad \text{a.e. on } [0, T].
\]
Therefore, we infer from (4.11) \(\sim (4.14)\) together with Lemma 3.3, again, that for a.e. \(t \in [0, T]\)
\[
\frac{1}{2C_\rho} |u_t(t)|^2_H + \frac{d}{dt} E(t, u(t)) + \frac{d}{dt} \int_0^1 (\dot{\beta}(u(t)) + \dot{g}(u(t)) \right) dx
\leq \alpha(t) (E(t, u(t)) + |u(t)|^p_H + B_2)
\quad + \alpha(t) (E(t, u(t)) + |u(t)|^p_H + B_2 + 1) (|u(t)|_H + 1)
\quad + \frac{d}{dt} \int_0^{\ell(t)} f_0(t)u(t) dx + \frac{d}{dt} \int_{\ell(t)}^1 f_1(t)u(t) dx + G_1(t)|u(t)|_H,
\]
where \(C_1\) is some suitable positive constant.

Thus the proposition has been proved. \(\blacksquare\)

5. Global existence and global attractor

The aim of this section is to prove Theorems 2.1, 2.2 and 2.3. In the rest of this paper we shall use same notation as in the previous sections, too.

Proof of Theorem 2.1. Let \([0, T^\ast)\) be the maximal interval of existence of a solution \(\{u, \ell\}\) of \(SP\). Suppose that \(T^\ast < \infty\). Then, by (4.1) and Proposition 4.2 there is a positive constant \(M_1\) such that \(|u(t)|_H \leq M_1\) for \(t \in [0, T^\ast)\) and for a.e. \(t \in [0, T]\)

\[
\frac{1}{2C_\rho} |u_t(t)|^2_H + \frac{d}{dt} E(t, u(t)) + \frac{d}{dt} G_1(t)
\leq \alpha(t) (1 + M_1)(E(t, u(t)) + M_1^p + B_2) + M_1 G_2(t).
\]

For simplicity, putting
\[
\tilde{E}(t) := E(t, u(t)) + M_1^p + B_2 + 1 \quad \text{and} \quad \tilde{\alpha}(t) = (1 + M_1)\alpha(t),
\]
and applying the Gronwall’s inequality to (5.1) with the aid of integration by parts, we conclude that for \(0 < s_0 < t < T^\ast\)
\[
\tilde{E}(t) \leq \exp\left\{\int_{s_0}^t \tilde{\alpha}(\tau) d\tau\right\} \times
\times \left\{\tilde{E}(s_0) + \int_{s_0}^t \left\{M_1 G_2(\tau) - G_1(\tau) \exp\left(\int_{s_0}^\tau \tilde{\alpha}(s) ds\right)\right\} d\tau\right\}
\leq \exp\left(\int_{s_0}^\infty \tilde{\alpha}(\tau) d\tau\right) \left\{\tilde{E}(s_0) + \int_{s_0}^t G_1(\tau) \tilde{\alpha}(\tau) \exp\left(\int_{s_0}^\tau \tilde{\alpha}(s) ds\right) d\tau\right\}
\quad + \exp\left(\int_{s_0}^\infty \tilde{\alpha}(\tau) d\tau\right) \times
\times \left\{-G_1(t) \exp\left(-\int_{s_0}^t \tilde{\alpha}(\tau) d\tau\right) + G_1(s_0) + M_1 \int_{s_0}^t G_2(\tau) d\tau\right\}.\]
Therefore, from the above inequality together with (3.3) there exists a positive constant \(M_2 := M_2(s_0) \) independent of \(T^* \) such that
\[
\begin{align*}
|u(t)|_X & \leq M_2 \\
|u(t)|_{L^\infty(0,1)} & \leq M_2 \\
|b^i(t, \ell, u)| & \leq M_2(i = 0, 1)
\end{align*}
\]
for \(t \in [s_0, T^*) \).

Furthermore, by assumption (H5) we have
\[
u(t, x) = \int_0^x u_y(t, y) dy + u(t, 0)
\]
\[
\geq -x^{1/p'}|u_x(t)|_{L^p(0,1)} + d_0
\]
\[
\geq -x^{1/p'}M_2 + d_0
\]
for \(t, x \in [s_0, T^*) \times [0, 1] \).

This implies that \(u(t, x) > 0 \) for \((t, x) \in [s_0, T^*) \times [0, (d_0/M_2)^{p'}] \), that is, \(\ell(t) > (d_0/M_2)^{p'} \) for \(t \in [s_0, T^*) \). Similarly, we have \(\ell(0) < 1 - (d_0/M_2)^{p'} \) for \(t \in [s_0, T^*) \). Hence, by Theorem 3.1 the solution \(\{u, \ell\} \) can be extended beyond time \(T^* \). This is a contradiction. Thus, \(T^* = \infty \) is obtained, namely, \(\{u, \ell\} \) is a solution of \(SP \) on \([0, \infty) \).}

Proof of Theorem 2.2. First, (2.2) is a direct consequence of (4.1), that is, for \(t \geq 0 \) and \([u, \ell] \in U(M, \delta) \)
\[
|u(t)|_H \leq C_1(M \exp(-\mu_1 t) + 1) \leq C_1(M_1 + 1) := M_3,
\]
where \(C_1 \) and \(\mu_1 \) are positive constants defined in Proposition 4.1.

Let \(t_0 \) be any positive number. By (4.2) with \(s = 0 \) it holds that
\[
\int_0^{t_0} E(\tau, u(\tau)) d\tau \leq M_4 \quad \text{for all } [u, \ell] \in U(M, \delta),
\]
where \(M_4 \) is a positive constant depending only on \(C_1, M \) and \(t_0 \).

On account of Proposition 4.2 we see that, for a.e. \(t \in [0, T] \),
\[
\frac{1}{2C_3}|u_\tau(\tau)|_H^2 + \frac{d}{d\tau}E(\tau, u(\tau)) + \frac{d}{d\tau}G_1(\tau)
\]
\[
\leq \alpha(\tau) (1 + |u(\tau)|_H) (E(\tau, u(\tau))
\]
\[
+ |u(\tau)|_H^p + B_2 + 1) + G_2(\tau)|u(\tau)|_H.
\]
Multiplying (5.4) by \(\tau \) and integrating it over \([0, t] \), \(0 < t \leq t_0 \), we obtain, for all \(t \in [0, t_0] \),
\[
\frac{1}{2C_3} \int_0^t \tau|u_\tau(\tau)|_H^2 d\tau + tE(t, u(t)) + tG_1(t)
\]
\[
\leq \int_0^t \tau\alpha(\tau) (1 + M_3) (E(\tau, u(\tau)) + M_3^p + B_2 + 1) d\tau
\]
\[
+ M_3 \int_0^t G_2(\tau) d\tau + \int_0^t E(\tau, u(\tau)) d\tau + \int_0^t G_1(\tau) d\tau.
\]
Applying Gronwall’s inequality to (5.5), for any \(t_0 > 0 \) there is a positive constant \(M_5(t_0) \) such that
\[
E(t_0, u(t_0)) \leq M_5(t_0) \quad \text{for } [u, \ell] \in U(M, \delta).
\]
(5.6)
\[
\int_{0}^{t_0} \tau \|u_{\tau}(\tau)\|_{H}^2 d\tau \leq M_5(t_0)
\]
From Lemma 3.3 it follows that (2.4) is valid.

Finally, we shall show (2.3). From a similar calculation to (5.2) it holds that for any \(t_0 > 0 \)
\[
\frac{1}{2} \left(\frac{d_0}{M_5(t_0)} \right)^{p'} \leq \ell(t) \leq 1 - \frac{1}{2} \left(\frac{d_0}{M_5(t_0)} \right)^{p'}
\]
for \(t \geq t_0 \) and \([u, \ell] \in U(M, \delta)\), so that in order to prove (2.3) it is sufficient to get the uniform estimate for free boundary near \(t = 0 \). Let \(t_0 > 0 \) and \([u, \ell] \in U(M, \delta)\). Then, there is a positive number \(t_1 \leq t_0 \) (which may depend on \([u_0, \ell_0] \)) such that \(\frac{\delta}{2} \leq \ell \leq 1 - \frac{\delta}{2} \) on \([0, t_1] \). Therefore, it follows from Lemma 3.1 that there is a positive constant \(M_6 = M_6(\delta) \) such that for \(0 \leq t \leq t_1 \)
\[
\int_{0}^{t} \tau^2 |\ell'(\tau)|^{p'+2} d\tau \leq M_6(t^{2/p} |\tau_1^{1/p} u_{\tau}|_{L^\infty(0,t;X)})^2 \quad \text{on } \[0, t_1\]
\]
\[
+ |\tau^{1/p} u_{\tau}|_{L^\infty(0,t;X)}^p \int_{0}^{t} \tau (|u_{\tau}|_{H}^2 + |\xi|_{H}^2 + |g(u)|_{H}^2 + |f_{0}|_{H} + |f_{1}|_{H}^2) d\tau.
\]
(5.7)
Accordingly,
\[
|\ell(t) - \ell_0| \leq \int_{0}^{t} |\ell'(\tau)| d\tau
\]
(5.8)
\[
= \int_{0}^{t} \tau^{-2/(p'+2)} \ell^{2/(p'+2)} d\tau \quad \text{on } \[0, t_1\]
\]
\[
\leq \left(\frac{p'+1}{p'-1} \right)^{\frac{p'+1}{p'+2}} \left(\int_{0}^{t} \tau^2 |\ell'(\tau)|^{p'+2} d\tau \right)^{1/(p'+2)}.
\]
By (5.6) \(\sim \) (5.8) there exists a positive number \(t_2 \in (0, t_0] \) such that
\[
\frac{\delta}{2} \leq \ell(t) \leq 1 - \frac{\delta}{2} \quad \text{for } t \in [0, t_2] \text{ and } [u, \ell] \in U(M, \delta).
\]
Thus, Theorem 2.2 has been proved.

Proof of Theorem 2.3. First, [1, Theorem 5.1] implies the continuity of the operator \(S(t) \), \(t \geq 0 \), and Theorem 2.2 shows that for any \(t_0 > 0 \), \(M > 0 \) and \(\delta \in (0, 1/2) \) the set \(\cup_{t\geq t_0} S(t)B(M, \delta) \) is relatively compact in \(V \). So, in order to accomplish the proof of Theorem 2.3 it is sufficient to show the existence of an absorbing set because of the general theory in [16, Chapter 1,
Theorem 1.1. Namely, we shall show that there are positive constants M^* and $\delta^* \in (0, 1/2)$ such that for any positive numbers $M > 0$ and $\delta \in (0, 1/2)$ there exists a positive number $T_1 = T_1(M, \delta)$ such that

$$S(t)B(M, \delta) \subset B(M^*, \delta^*) \quad \text{for } t \geq T_1.$$

(5.9)

Let $[u_0, \ell_0] \in B(M, \delta)$ and $[u(t), \ell(t)] = S(t)[u_0, \ell_0]$. By Proposition 4.1 we have

$$|u(t)|_H \leq C_1(M \exp(-\mu_1t) + 1) \quad \text{for } t \geq 0,$$

where C_1 and μ_1 are positive constants independent of M and δ.

Then, there is a positive number T_2 depending only on M and μ_1 such that

$$|u(t)|_H \leq 2C_1 =: M_7 \quad \text{for } t \geq T_2,$$

and hence it follows from (4.2) that

$$\int_t^{t+1} E(\tau, u(\tau))d\tau \leq M_8,$$

where $M_8 = M_8(C_1, \mu_1, \rho, k_0, k_1)$ is a positive constant independent of M and δ. It is clear from Proposition 4.2 that for $t \geq T_2$ and a.e. $\tau \in [t, \infty)$

$$(\tau - t) \frac{d}{d\tau} \hat{E}(\tau) + (\tau - t) \frac{d}{d\tau} G_1(\tau)$

$$\leq (1 + M_7)(\tau - t)\alpha(\tau)\hat{E}(\tau) + M_7 G_2(\tau),$$

(5.10)

where $\hat{E}(\tau) = E(\tau, u(\tau)) + M_7^p + B_2$. Integrating (5.10) over $[t, t+1]$, $t \geq T_2$, we see that

$$\hat{E}(t + 1) + G_1(t + 1)$$

$$\leq (1 + M_7) \int_t^{t+1} (\tau - t)\alpha(\tau)\hat{E}(\tau)d\tau + M_7 \int_t^{t+1} G_2(\tau)d\tau$$

$$+ \int_t^{t+1} \hat{E}(\tau)d\tau + \int_t^{t+1} G_1(\tau)d\tau.$$

Applying Gronwall’s inequality to the above inequality, there is a positive constant M_8 independent of M and δ such that $|u(t)|_X \leq M_8$ for $t \geq T_2 + 1$. By virtue of a similar argument to the proof of Theorem 2.1 we infer that

$$\left(\frac{d_0}{M_8}\right)^{p'} \leq \ell(t) \leq 1 - \left(\frac{d_0}{M_8}\right)^{p'} \quad \text{for } t \geq T_2 + 1.$$

Thus, putting $T_1 = T_2 + 1$, $M^* = M_7$ and $\delta^* = \left(\frac{d_0}{M_8}\right)^{p'}$, we get (5.9).
6. ASYMPTOTIC BEHAVIOR AS T → ∞

In order to prove Theorem 2.4 we give the following proposition which is concerned with the asymptotic convergence of solutions of SP.

Lemma 6.1. Suppose that all the assumptions of Theorem 2.1 hold. Let $M > 0$, $\delta \in (0, 1/2)$, $T_0 > 0$ and $\varepsilon > 0$. Then, there is a positive number s^* satisfying the following condition (*):

(*) For any $[u_0, \ell_0] \in B(M, \delta)$ denote by $\{u(\cdot; u_0, \ell_0), \ell(\cdot; u_0, \ell_0)\}$ a solution of $SP(\rho; a; b_0^I, b_1^I; \beta, g, f, f_1, u_0, \ell_0)$ on $[0, \infty)$. Then,

$$\sup_{t \in [0, T_0]} \text{dist}(\{u(t + s; u_0, \ell_0), \ell(t + s; u_0, \ell_0)\}, S(t)[u(s; u_0, \ell_0), \ell(s; u_0, \ell_0)]) < \varepsilon$$

for $s \geq s^*$ and $[u_0, \ell_0] \in B(M, \delta)$.

Proof. We suppose that condition (*) does not hold. Then, there are a positive number $\varepsilon_0 > 0$, $s_n \geq n(n = 1, 2, \ldots)$ and $[u_{0n}, \ell_{0n}] \in B(M, \delta)$ $(n = 1, 2, \ldots)$ such that

$$(6.1) \sup_{t \in [0, T_0]} \text{dist}(\{u(t + s_n; u_{0n}, \ell_{0n}), \ell(t + s_n; u_{0n}, \ell_{0n})\}, S(t)[u(s_n; u_{0n}, \ell_{0n}), \ell(s_n; u_{0n}, \ell_{0n})]) \geq \varepsilon_0 \quad \text{for each } n = 1, 2, \ldots.$$

Here, in order to avoid surplus confusion for notation put $u_n = u(\cdot + s_n; u_{0n}, \ell_{0n})$, $\ell_n = u(\cdot + s_n; u_{0n}, \ell_{0n})$, $b^{I + n}_i = b^{I + n}_i$, $i = 0, 1$, $f_{in}(t) = f_i(t + s_n)$, $i = 0, 1$, $\hat{u}_{0n} = u(s_n; u_{0n}, \ell_{0n})$ and $\hat{\ell}_{0n} = u(s_n; u_{0n}, \ell_{0n})$. Clearly, $\{u_n, \ell_n\}$ is a solution of $SP(\rho; a; b_0^I, b_1^I; \beta, g, f, f_1, \hat{u}_{0n}, \hat{\ell}_{0n})$ on $[0, T_0]$, $b^{I + n}_i \to b_i$ on R as $n \to \infty$ in the sense of Mosco for each $t \in [0, T_0]$ and $i = 0, 1$, and $f_{in} \to f_i^*$ in $L^2(0, T_0; H)$ as $n \to \infty$ for $i = 0, 1$.

By Theorem 2.2 and Lemma 3.1 there are positive constants K_1 and δ_1 such that for each n

$$|u_n|_{W^{1, 2}(0, T_0; H)} \leq K_1,$$

$$|u_n|_{L^\infty(0, T_0; X)} \leq K_1,$$

$$|b^{(i)}_{in}(u_n(\cdot, i))|_{L^\infty(0, T_0)} \leq K_1 \quad \text{for } i = 0, 1,$$

$$|\ell_n|_{L^{p + 2}(0, T_0)} \leq K_1,$$

$$\delta_1 \leq \ell_n \leq 1 - \delta_1 \quad \text{on } [0, T_0].$$

In particular, we have

$$|\hat{u}_{0n}|_X \leq K_1 \quad \text{and} \quad \delta_1 \leq \hat{\ell}_{0n} \leq 1 - \delta_1 \quad \text{for each } n.$$

Then, without loss of generality we may assume that $\hat{u}_{0n} \to \hat{u}_0$ in H and weakly in X, and $\hat{\ell}_{0n} \to \hat{\ell}_0$ in R for some $\hat{u}_0 \in X$ and $\hat{\ell}_0 \in (0, 1)$. Hence, we
can obtain the following convergence in a similar way to [8, Theorem 2.4]:

\[(6.2) \quad u_n \to \hat{u} \text{ in } C([0,T_0]; H) \text{ and } \ell_n \to \hat{\ell} \text{ in } C([0,T_0]) \text{ as } n \to \infty,\]

where \(\{\hat{u}, \hat{\ell}\}\) is a solution of \(SP(\rho; a; b_0, b_1; \beta, g, f_0^*, f_1^*, \hat{u}_0, \hat{\ell}_0)\) on \([0,T_0]\).

Similarly, by putting [\(\tilde{u}_n, \tilde{\ell}_n\)] = \(S(\cdot)[u(s_n; u_{0n}, \ell_{0n}), \ell(s_n; u_{0n}, \ell_{0n})]\), we have

\[\tilde{u}_n \to \hat{u} \text{ in } C([0,T_0]; H) \text{ and } \tilde{\ell}_n \to \hat{\ell} \text{ in } C([0,T_0]) \text{ as } n \to \infty.\]

Obviously, (6.2) and (6.3) contradict (6.1). Thus, this lemma has been proved.

Proof of Theorem 2.4. Let \(M > 0, \delta \in (0, 1/2)\) and \(\varepsilon > 0\). We denote by \(\{u(\cdot; u_0, \ell_0), \ell(\cdot; u_0, \ell_0)\}\) a solution of \(SP(\rho; a; b_0^*, b_1^*; \beta, g, f_0, f_1, u_0, \ell_0)\) on \([0, \infty)\). By Propositions 4.1 and 4.2 the set \(U_1 := \{u(t; u_0, \ell_0), \ell(t; u_0, \ell_0)\} \in V; [u_0, \ell_0] \in \mathcal{B}(M, \delta), t \geq 0\}\) is a subset of \(\mathcal{B}(M, \ell_s)\) for some \(M_s > 0\) and \(\delta_s \in (0, 1/2)\). Since \(\mathcal{A}\) is a global attractor of the semigroup \(\{S(t); t \geq 0\}\), there is a positive number \(T_0\) such that

\[\text{dist}(S(t)U_1, \mathcal{A}) < \frac{\varepsilon}{2} \quad \text{for } t \geq T_0.\]

This implies that for \(t \geq T_0, s \geq 0\) and \([u_0, \ell_0] \in \mathcal{B}(M, \delta)\)

\[(6.3) \quad \text{dist}(S(t)[u(s; u_0, \ell_0), \ell(s; u_0, \ell_0)], \mathcal{A}) < \frac{\varepsilon}{2}.\]

It follows from Lemma 6.1 that there exists a positive constant \(s^*\) such that for \(s \geq s^*\) and \([u_0, \ell_0] \in \mathcal{B}(M, \delta)\)

\[\text{dist}([u(s + T_0; u_0, \ell_0), \ell(s + T_0; u_0, \ell_0)], S(T_0)[u(s; u_0, \ell_0), \ell(s; u_0, \ell_0)]) < \frac{\varepsilon}{2}.\]

Hence, on account of (6.3) and the above inequality, we have

\[\text{dist}([u(t; u_0, \ell_0), \ell(t; u_0, \ell_0)], \mathcal{A}) < \varepsilon \ell \quad \text{for } t \geq T_0 + s^* \text{ and } [u_0, \ell_0] \in \mathcal{B}(M, \delta).\]

This is the conclusion of Theorem 2.4. ■

References

Department of Mathematics
Faculty of Education
Gifu University
Gifu, 501-11, JAPAN

E-mail address: aiki@gumail.cc.gifu-u.ac.jp
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be