Abstract and Applied Analysis
Volume 2012 (2012), Article ID 364360, 25 pages
Research Article

Numerical Solutions of Odd Order Linear and Nonlinear Initial Value Problems Using a Shifted Jacobi Spectral Approximations

1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt

Received 25 May 2012; Accepted 26 June 2012

Academic Editor: D. Anderson

Copyright © 2012 A. H. Bhrawy and M. A. Alghamdi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A shifted Jacobi Galerkin method is introduced to get a direct solution technique for solving the third- and fifth-order differential equations with constant coefficients subject to initial conditions. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. A quadrature Galerkin method is introduced for the numerical solution of these problems with variable coefficients. A new shifted Jacobi collocation method based on basis functions satisfying the initial conditions is presented for solving nonlinear initial value problems. Through several numerical examples, we evaluate the accuracy and performance of the proposed algorithms. The algorithms are easy to implement and yield very accurate results.