ACCURATE SOLUTION ESTIMATES FOR NONLINEAR NONAUTONOMOUS VECTOR DIFFERENCE EQUATIONS

RIGOBERTO MEDINA AND M. I. GIL’

Received 27 August 2002

The paper deals with the vector discrete dynamical system \(x_{k+1} = A_k x_k + f_k(x_k) \). The well-known result by Perron states that this system is asymptotically stable if \(A_k \equiv A = \text{const} \) is stable and \(f_k(x) \equiv \tilde{f}(x) = o(\|x\|) \). Perron’s result gives no information about the size of the region of asymptotic stability and norms of solutions. In this paper, accurate estimates for the norms of solutions are derived. They give us stability conditions for (1.1) and bounds for the region of attraction of the stationary solution. Our approach is based on the “freezing” method for difference equations and on recent estimates for the powers of a constant matrix. We also discuss applications of our main result to partial reaction-diffusion difference equations.

1. Introduction and notation

Let \(\mathbb{C}^n \) be the set of \(n \)-complex vectors endowed with the Euclidean norm \(\| \cdot \| \). Consider in \(\mathbb{C}^n \) the equation

\[
 x_{k+1} = A_k x_k + f_k(x_k) \quad (k = 0, 1, 2, \ldots),
\]

where \(A_k (k = 0, 1, 2, \ldots) \) are \(n \times n \)-complex matrices and \(f_k : \mathbb{C}^n \rightarrow \mathbb{C}^n \) are given functions. A well-known result of Perron which dates back to 1929 (see [11, page 270], [8, Theorem 9.14], and [6]) states that (1.1) is asymptotically stable if \(A_k \equiv A = \text{const} \) is stable (i.e., the spectral radius \(r_s(A) \) of \(A \) is less than 1) and \(f_k(x) = \tilde{f}(x) = o(\|x\|) \). Clearly, this result is purely local. It gives no information about the size of the region of asymptotic stability and norms of solutions.

In this paper, we derive accurate estimates for the norms of solutions. Our approach is based on the “freezing” method for difference equations and on recent estimates for the powers of a constant matrix. Note that the “freezing” method for difference equations was developed in [5]. It is based on the relevant ideas for differential equations (cf. [2, 3, 7]).

Firstly, we consider the linear difference equation

\[
 x_{k+1} = A_k x_k \quad (k = 0, 1, 2, \ldots).
\]
As it is well known, the fundamental matrix \(X(k) \) of (1.2) can be expressed as
\[
X(m) = A_m A_{m-1} \cdots A_0. \tag{1.3}
\]
But such a representation does not yield much information about the asymptotic value of solutions, except in the case of constant coefficients \(A_k = A \) \((k = 0, 1, 2, \ldots)\), when \(X(k) = A^k \) and the Jordan canonical form of \(A \) determines the asymptotic behavior of the solutions. To prove the stability of (1.2) is equivalent to proving the boundedness of the sequence \(\{\|X(m)\|\}^\infty_m \). This problem is easy to solve under the condition \(\sup_k \|A_k\| \leq 1 \). But it is rather restrictive. The “freezing” method allows us to avoid this condition in the case
\[
\|A_k - A_j\| \leq q_{k-j} \quad (q_k = q_{-k} = \text{const} \geq 0, \; q_0 = 0; \; j, k = 0, 1, 2, \ldots). \tag{1.4}
\]
For example, if \(A_k = \sin(ck)B \) \((c = \text{const} > 0)\), where \(B \) is a constant matrix, then condition (1.4) holds with \(q_k = 2\|B\|\|\sin(ck/2)\| \), since
\[
\sin \alpha - \sin \beta = 2\sin \left(\frac{\alpha - \beta}{2} \right) \cos \left(\frac{\alpha + \beta}{2} \right) \tag{1.5}
\]
for real \(\alpha, \beta \).

For an \(n \times n \)-matrix \(A \), denote
\[
g(A) = \left[N^2(A) - \sum_{j=1}^{n} |\lambda_j(A)|^2 \right]^{1/2}, \tag{1.6}
\]
where \(N(A) \) is the Frobenius (Hilbert-Schmidt) norm of a matrix \(A : N^2(A) = \text{Trace}(AA^*) \), and \(\lambda_1(A), \lambda_2(A), \ldots, \lambda_n(A) \) are the eigenvalues of \(A \) including their multiplicities. The relations
\[
g(A) \leq \left[N^2(A) - |\text{Trace}(A^2)| \right]^{1/2},
\]
\[
g(A) \leq \sqrt{\frac{1}{2} N(A^* - A)} \tag{1.7}
\]
are true [3, Section 2.1]. Here \(A^* \) is the adjoint matrix. If \(A \) is a normal matrix: \(A^*A = AA^* \), then \(g(A) = 0 \). If \(A = (a_{ij}) \) is a triangular matrix such that \(a_{ij} = 0 \) for \(1 \leq j \leq i \leq n \), then
\[
g^2(A) = \sum_{1 \leq i \leq j \leq n} |a_{ij}|^2. \tag{1.8}
\]
For a natural number \(n > 1 \), introduce the numbers
\[
\gamma_{n,p} = \frac{C_{n-1}^p}{(n-1)^p} \tag{1.9}
\]
for \(p = 1, 2, \ldots, n - 1 \) and \(\gamma_{n,0} = 1 \). Here and below,

\[
\binom{k}{m} = \frac{m!}{(m-k)!k!} \quad (k = 0, 1, 2, \ldots, m; \ m = 1, 2, \ldots) \tag{1.10}
\]

are the binomial coefficients. Evidently, for \(n > 2 \),

\[
\gamma_{n,p}^2 = \frac{(n-2)(n-3)\cdots(n-p)}{(n-1)^{p-1}p!} \leq \frac{1}{p!} \tag{1.11}
\]

Due to [4, Theorem 1.2.1], for any \(n \times n \)-matrix \(A \), the inequality

\[
\|A^m\| \leq \sum_{k=0}^{m_1} \frac{m!r_{s-k}(A)g^k(A)\gamma_{n,k}}{(m-k)!k!} \tag{1.12}
\]

holds for every integer \(m \), where \(r_s(A) \) is the spectral radius of \(A \).

2. Preliminary facts

Firstly, we recall a boundedness result for (1.2) which is proven in [5, Lemma 1.1], namely, we recall the following lemma.

Lemma 2.1. Under condition (1.4), let

\[
\zeta_0 \equiv \sum_{k=1}^{\infty} q_k \sup_{l=1,2,\ldots} \|A^k_l\| < 1. \tag{2.1}
\]

Then, every solution \(\{x_k\} \) of (1.2) satisfies the inequality

\[
\sup_{k=1,2,\ldots} \|x_k\| \leq \beta_0 \|x_0\|(1 - \zeta_0)^{-1}, \tag{2.2}
\]

where

\[
\beta_0 = \sup_{k,l=0,1,2,\ldots} \|A^k_l\|. \tag{2.3}
\]

As a consequence, it is possible to establish the next corollaries.

Corollary 2.2. Let the conditions

\[
\|A_k - A_{k+1}\| \leq \tilde{q}^k \quad (k = 1, 2, \ldots; \ \tilde{q} = \text{const} > 0), \tag{2.4}
\]

\[
\theta_0 \equiv \sum_{k=1}^{\infty} \sup_{l=1,2,\ldots} \|A^k_l\|k < \tilde{q}^{-1} \tag{2.5}
\]

hold. Then, every solution \(\{x_k\} \) of (1.2) satisfies the inequality

\[
\|x_k\| \leq \beta_0 \|x_0\|(1 - \tilde{q}\theta_0)^{-1} \quad (k = 1, 2, \ldots). \tag{2.6}
\]
Indeed, under condition (2.4), we have
\[||A_k - A_j|| \leq \tilde{q}|k - j| \quad (j, k = 0, 1, 2, \ldots). \] (2.7)
So \(\zeta_0 \leq \tilde{q}\theta_0 \). Now, the required result follows from Lemma 2.1.

Corollary 2.3. Let condition (2.4) hold. In addition, for a constant \(v > 0 \), let
\[\theta(v) \equiv \sum_{k=1}^{\infty} v^{-k-1} \sup_{l=1,2,\ldots} ||A_k^l|| |k < \tilde{q}^{-1}. \] (2.8)

Then, every solution \(\{x_k\} \) of (1.2) satisfies the inequality
\[||x_k|| \leq v^k m(v) ||x_0|| (1 - \tilde{q}\theta(v))^{-1} \quad (k = 1, 2, \ldots), \] (2.9)
where
\[m(v) \equiv \sup_{l,k=0,1,2,\ldots} v^{-k} ||A_k^l||. \] (2.10)

Indeed, due to condition (2.8), \(m(v) < \infty \). Putting \(x_k = v^k z_k \) in (1.2), we get
\[z_{k+1} = v^{-1} A_k z_k. \] (2.11)

Corollary 2.2 and condition (2.8) imply
\[\sup_{k=1,2,\ldots} ||z_k|| \leq m(v) ||z_0|| (1 - \tilde{q}\theta(v))^{-1} \quad (k = 1, 2, \ldots). \] (2.12)

Hence, the required estimate follows. Recall also the following result from [5].

Theorem 2.4. Under condition (1.4), let
\[\rho_0 \equiv \sup_{l=1,2,\ldots} r_5 (A_l) < 1, \quad v_0 \equiv \sup_{l=0,1,2,\ldots} g(A_l) < \infty, \] (2.13)
\[\xi \equiv \sum_{m=1}^{\infty} \sum_{k=0}^{n-1} C_{nk} \rho_0^m v_0 \gamma_{n,k} q_m < 1. \] (2.14)

Then, every solution \(\{x_k\} \) of (1.2) is bounded. Moreover,
\[\sup_{k=1,2,\ldots} ||x_k|| \leq M_0 ||x_0|| (1 - \xi)^{-1}, \] (2.15)
where
\[M_0 = \sum_{k=0}^{n-1} v_0^k \gamma_{n,k} (\psi_k + k) \rho_0^{\psi_k}. \] (2.16)

with \(\psi_k = \max\{0, -k(1 + \log \rho_0)/\log \rho_0\} \).
3. The main result

The previous estimates give us a possibility to investigate (1.1) as a nonlinear perturbation of (1.2). For a positive $r \leq \infty$, denote the ball

$$B_r = \{ x \in \mathbb{C}^n : \| x \| \leq r \} \quad (3.1)$$

and assume that there are constants $\mu, \nu \geq 0$, such that

$$\| f_k (x) \| \leq \nu \| x \| + \mu \quad (x \in B_r; k = 0, 1, 2, \ldots). \quad (3.2)$$

Recall that the quantities $\rho_0, \nu_0, \text{ and } M_0$ are defined by (2.13) and (2.16). Let

$$\psi (A) \equiv \sum_{k=0}^{\infty} \sum_{j=0}^{n-1} \mathcal{C}_k^j \rho_0^{-k-j} \nu_0 \gamma_{n,j} (q_k + \nu). \quad (3.3)$$

Now we are in a position to formulate the main result of the paper.

Theorem 3.1. Under the conditions (1.4), (2.13), and (3.2), let

$$S(f; A) \equiv \sum_{k=0}^{\infty} \sum_{j=0}^{n-1} \mathcal{C}_k^j \rho_0^{-k-j} \nu_0 \gamma_{n,j} (q_k + \nu) < 1. \quad (3.4)$$

Then, any solution $\{ x_k \}_{i=0}^{\infty}$ of (1.1) satisfies the inequality

$$\sup_{k=1,2,\ldots} \| x_k \| \leq \frac{M_0 \| x_0 \| + \mu \psi (A)}{1 - S(f; A)}, \quad (3.5)$$

provided that

$$\frac{M_0 \| x_0 \| + \mu \psi (A)}{1 - S(f; A)} \leq r. \quad (3.6)$$

The proof of this theorem is given afterwards.

Recall that

$$\beta_0 = \sup_{k,l=0,1,\ldots} \| A^k_l \| \quad (3.7)$$

and let

$$\theta_1 \equiv \sum_{k=0}^{\infty} \sup_{l=0,1,\ldots} \| A^k_l \|. \quad (3.8)$$

Lemma 3.2. Under conditions (1.4) and (3.2), let

$$S_0 \equiv \sum_{k=0}^{\infty} (q_k + \nu) \sup_{l=0,1,2,\ldots} \| A^k_l \| < 1. \quad (3.9)$$
Then, every solution \(\{x_k\} \) of (1.1) satisfies the inequality

\[
||x_k|| \leq [\beta_0 ||x_0|| + \theta_1 \mu](1 - S_0)^{-1} \quad (k = 1, 2, \ldots),
\]

provided that

\[
[\beta_0 ||x_0|| + \theta_1 \mu](1 - S_0)^{-1} \leq r.
\]

Proof. Rewrite (1.1) as

\[
x_{k+1} - A_l x_k = (A_k - A_l) x_k + f_k(x_k)
\]

with a fixed integer \(l \). The variation of parameters formula yields

\[
x_{l+1} = A_{l+1} x_0 + \sum_{j=0}^{l} A_{l+j} [(A_j - A_l) x_j + f_j(x_j)]
\]

There are two cases to consider: \(r = \infty \) and \(r < \infty \). First, assume that (3.2) is valid with \(r = \infty \), then, by (1.4),

\[
||x_{l+1}|| \leq \beta_0 ||x_0|| + \sum_{j=0}^{l} ||A_{l+j}|| (q_j ||x_j|| + \nu ||x_j|| + \mu)
\]

\[
\leq \beta_0 ||x_0|| + \sum_{j=0}^{l} ||A_{l+j}|| (q_j + \nu) ||x_j|| + \theta_1 \mu
\]

\[
\leq \beta_0 ||x_0|| + \max_{k=0, \ldots, l} ||x_k|| \left(\sum_{k=0}^{\infty} (q_k + \nu) \sup_{l=0,1,2,\ldots} ||A_k^l|| \right) + \theta_1 \mu.
\]

Consequently,

\[
\max_{k=1,2,\ldots,l+1} ||x_k|| \leq \beta_0 ||x_0|| + S_0 \max_{k=0,1,\ldots,l+1} ||x_k|| + \mu \theta_1.
\]

But \(\beta_0 \geq 1 \). So

\[
\max_{k=0,1,2,\ldots,l+1} ||x_k|| \leq \beta_0 ||x_0|| + S_0 \max_{k=0,1,\ldots,l+1} ||x_k|| + \mu \theta_1.
\]

Hence,

\[
\sup_{k=0,1,2,\ldots} ||x_k|| \leq \frac{\beta_0 ||x_0|| + \mu \theta_1}{1 - S_0}.
\]

Let now \(r < \infty \). Define the function

\[
\tilde{f}_k(x) = \begin{cases}
 f_k(x), & ||x|| \leq r, \\
 0, & ||x|| > r.
\end{cases}
\]
Since
\[\left\| \tilde{f}_k(x) \right\| \leq \nu \| x \| + \mu, \quad k = 0, 1, \ldots; \ x \in B_\infty, \tag{3.19} \]
then the sequence \(\{\tilde{x}_k\}_{k=0}^\infty \) defined by
\[\tilde{x}_0 = x_0, \quad \tilde{x}_{k+1} = A_k \tilde{x}_k + \tilde{f}_k(\tilde{x}_k), \quad k = 0, 1, \ldots, \tag{3.20} \]
satisfies the inequality
\[\sup_{k=0,1,\ldots} \left\| \tilde{x}_k \right\| \leq \frac{\beta_0 \| x_0 \| + \mu \theta_1}{1 - S_0} \leq r \tag{3.21} \]
according to the above arguments and condition (3.11). But \(f \) and \(\tilde{f}_k(x) \) coincide on \(B_r \). So \(x_k = \tilde{x}_k \) for \(k = 0, 1, 2, \ldots \). Therefore, (3.10) is satisfied, thus concluding the proof.

\textbf{proof of Theorem 3.1.} As it was proved in [5, Lemma 2.2], \(\beta_0 \leq M_0 \). Moreover, due to (1.12), we have \(\theta_1 \leq \psi(A) \) and \(S_0 \leq S(f: A) \). Now the result is due to Lemma 3.2.

\textbf{Remarks 3.3.} (a) Under (3.2) with \(\mu = 0 \), \(f_0(0) = 0 \) so that \(\{0\} \) is a solution of (1.1). Under condition \(S(f, A) < 1 \), Theorem 3.1 asserts that the trivial solution is stable, and that any initial vector \(x_0 \in B_r \), satisfying the condition
\[\| x_0 \| \leq \frac{(1 - S(f, A)) r}{M_0}, \tag{3.22} \]
belongs to the region of attraction.
(b) If \(\nu \equiv 0 \), then every solution of (1.1) with the initial vector \(x_0 \) satisfying
\[\| x_0 \| M_0 + \mu \psi(A) \leq (1 - \xi) r \] is bounded.

\textbf{4. Applications}

In this section, we will illustrate our main results by considering a partial difference equation. We consider a simple three-level discrete reaction-diffusion equation of the form
\[u_i^{(j+1)} = a_j u_i^{(j)} + b_j u_{i-1}^{(j)} + c_j u_{i+1}^{(j)} + g_i^{(j)} + f_j(u_i^{(j)}), \tag{4.1} \]
defined on \(\Omega = \{(i, j) : i = 0, 1, \ldots, n + 1; \ j = 0, 1, \ldots\} \), where \(\{a_j\}, \{b_j\}, \) and \(\{c_j\} \) are real sequences, \(g = \{g_i^{(j)}\} \) is a complex function defined on \(\Omega \), and \(f_j : \mathbb{C} \to \mathbb{C} (j = 0, 1, \ldots) \) are given functions. Assume that the side conditions
\[u_0^{(j)} = \delta_j \in \mathbb{C}, \quad j = 0, 1, \ldots, \tag{4.2} \]
\[u_n^{(j)} = \gamma_j \in \mathbb{C}, \quad j = 0, 1, \ldots, \tag{4.3} \]
\[u_i^{(0)} = \tau_j \in \mathbb{C}, \quad i = 1, 2, \ldots, n, \tag{4.4} \]
Solution estimates for difference equations

are imposed, where \(\tau = (\tau_1, \tau_2, \ldots, \tau_n) \in \mathbb{C}^n \). A solution of problem (4.1), (4.2), (4.3), and (4.4) is a discrete function \(u = \{u^{(j)}_{i,j}\}_{(i,j) \in \Omega} \) which satisfies relations (4.1), (4.2), (4.3), and (4.4). The existence and uniqueness of solutions to that problem is obvious, provided that \(f_j \) is one-one valued. With the notation

\[
u^{(j)} = \left(u^{(j)}_1, u^{(j)}_2, \ldots, u^{(j)}_n \right), \quad (4.5)
\]

the sequence \(\{u^{(j)}\}_{j=0}^{\infty} \) satisfies the vector equation

\[
u^{(j+1)} = A_j \nu^{(j)} + G_j + F_j(\nu^{(j)}), \quad j = 0,1,\ldots, \quad (4.6)
\]

and the initial condition

\[
u^{(0)} = \tau, \quad (4.7)
\]

where

\[
A_j = \begin{bmatrix}
 b_j & c_j & 0 & \cdots & 0

 a_j & b_j & c_j & 0 & \cdots & 0

 0 & a_j & b_j & c_j & \cdots & 0

 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots

 0 & \cdots & \cdots & 0 & a_j & b_j
\end{bmatrix}, \quad j = 0,1,2,\ldots, \quad (4.8)
\]

\[
G_j = \left(g^{(j)}_1, \ldots, g^{(j)}_n \right) + (a_j \delta_j, 0, \ldots, 0, c_j \gamma_j),
\]

\[
F_j(x) = (f_j(x_1), \ldots, f_j(x_n)), \quad x = (x_1, x_2, \ldots, x_n).
\]

Thus, we can write problem (4.1), (4.2), (4.3), and (4.4) as (1.1) with

\[
f_j(x) = F_j(x) + G_j. \quad (4.9)
\]

Assume that there are nonnegative constants \(\mu_1 \) and \(\nu \) such that

\[
||F_j(x)|| \leq \nu ||x|| + \mu_1 \quad (x \in B; \ j = 1,2,\ldots). \quad (4.10)
\]

In addition,

\[
\mu_2 \equiv \sum_{j=0}^{\infty} ||G_j|| < \infty. \quad (4.11)
\]

So condition (3.2) holds with \(\mu_0 = \mu_1 + \mu_2 \). As a direct consequence of Theorem 3.1, we get the following theorem.

Theorem 4.1. Let conditions (1.4), (4.2), (4.10), and (4.11) hold with \(\mu = \mu_1 + \mu_2 \) and \(x_0 = \tau \). Then, the unique solution \(x_j = \{u^{(j)}_{i,j}\}_{(i,j) \in \Omega} \) of problem (4.1), (4.2), (4.3), and (4.4) satisfies inequality (3.5).
Remarks 4.2. Comparing Theorem 4.1 with [10, Theorems 1 and 2], we point out that the hypotheses of Theorem 4.1 can be checked more easily. In this paper, we have used a different approach. Our results do not overlap with those from [9, 10]. Other related works can be found in [1, pages 237–245].

Acknowledgments

This research was supported by Fondecyt Chile (Grant 1.030.460) and by the Kamea Fund (Israel).

References

Rigoberto Medina: Departamento de Ciencias Exactas, Universidad de Los Lagos, Casilla 933, Osorno, Chile
E-mail address: rmedina@ulagos.cl

M. I. Gil’: Department of Mathematics, Ben–Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
E-mail address: gilmi@cs.bgu.ac.il
Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions. However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk