A. Davydov, R. Street

Roots of Unity as a Lie Algebra

This note gives a categorical development arising from a theorem of A. A. Klyachko relating the Lie operad to roots of unity. We examine the "substitude" structure on the groupoid C whose homsets are the cyclic groups. The roots of unity representations of the cyclic groups form a Lie algebra for a certain oplax monoidal structure on the category of linear representations of C.