Solution of a Recursive Sequence of Order Ten

E. M. Elsayed

Abstract

We obtain in this paper the solutions of the following rational non-linear difference equations

$$x_{n+1} = \frac{x_{n-9}}{\pm 1 \pm x_{n-4} x_{n-9}}, \quad n = 0, 1, \ldots,$$

where initial values are non zero real numbers.

2000 Mathematics Subject Classification: 39A10.
Key words and phrases: recursive sequence, periodicity, solutions of difference equations.

1 Introduction

The study of Difference Equations has been growing continuously for the last decade. This is largely due to the fact that difference equations manifest themselves as mathematical models describing real life situations in probability theory, queuing theory, statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical network, quanta in radiation, genetics in biology, economics, psychology, sociology, etc. In fact, now it occupies a central position in applicable analysis and will no doubt continue to play an important role in mathematics as a whole.

1 Received 14 March, 2009
Accepted for publication (in revised form) 30 September, 2009
Recently there has been a lot of interest in studying the global attractivity, boundedness character, periodicity and the solution form of nonlinear difference equations. For some results in this area, for example: Aloqeili [1] has obtained the solutions of the difference equation

\[x_{n+1} = \frac{x_{n-1}}{a - x_n x_{n-1}}. \]

Cinar [3–5] obtained the solutions of the following difference equations

\[x_{n+1} = \frac{x_{n-1}}{1 + x_n x_{n-1}}, \quad x_{n+1} = \frac{x_{n-1}}{-1 + x_n x_{n-1}}, \quad x_{n+1} = \frac{ax_{n-1}}{1 + bx_n x_{n-1}}. \]

Cinar et al. [6] studied the solutions and attractivity of the difference equation

\[x_{n+1} = \frac{x_{n-3}}{-1 + x_n x_{n-1} x_{n-2} x_{n-3}}. \]

Elabbasy et al. [8] investigated the global stability, periodicity character and gave the solution of special case of the following recursive sequence

\[x_{n+1} = a x_n - \frac{b x_n}{c x_n - d x_{n-1}}. \]

Elabbasy et al. [9] investigated the global stability, boundedness, periodicity character and gave the solution of some special cases of the difference equation

\[x_{n+1} = \frac{\alpha x_{n-k}}{\beta + \gamma \prod_{i=0}^{k} x_{n-i}}. \]

Elabbasy et al. [10] investigated the global stability, periodicity character and gave the solution of some special cases of the difference equation

\[x_{n+1} = \frac{d x_{n-i} x_{n-k}}{c x_{n-s} - \bar{b}} + a. \]

Karatas et al. [31] obtained the solution of the difference equation

\[x_{n+1} = \frac{a x_{n-(2k+2)}}{-a + \prod_{i=0}^{2k+2} x_{n-i}}. \]

Simsek et al. [35] obtained the solution of the difference equation

\[x_{n+1} = \frac{x_{n-3}}{1 + x_{n-1}}. \]
In [36] Stevic solved the following problem

\[x_{n+1} = \frac{x_{n-1}}{1 + x_n}. \]

Other related results on rational difference equations can be found in refs. [2], [7], [11-40].

Our aim in this paper is to investigate the solution of the following nonlinear difference equations

(1) \[x_{n+1} = \frac{x_{n-9} \pm 1 \pm x_{n-4}x_{n-9}}{1 \pm x_{n-4}x_{n-9}}, \quad n = 0, 1, \ldots, \]

where the initial values \(x_{-j}, \ (j = 0, 1, \ldots, 9)\) are arbitrary non zero real numbers.

Let \(I\) be some interval of real numbers and let

\[f : I^{k+1} \to I, \]

be a continuously differentiable function. Then for every set of initial conditions \(x_{-k}, x_{-k+1}, \ldots, x_0 \in I\), the difference equation

(2) \[x_{n+1} = f(x_n, x_{n-1}, \ldots, x_{n-k}), \quad n = 0, 1, \ldots, \]

has a unique solution \(\{x_n\}_{n=-k}^{\infty}\).

Definition 1 A point \(\bar{x} \in I\) is called an equilibrium point of Eq.(2) if

\[\bar{x} = f(\bar{x}, \bar{x}, \ldots, \bar{x}). \]

That is, \(x_n = \bar{x}\) for \(n \geq 0\), is a solution of Eq.(2), or equivalently, \(\bar{x}\) is a fixed point of \(f\).

Definition 2 *(Periodicity)*

A sequence \(\{x_n\}_{n=-k}^{\infty}\) is said to be periodic with period \(p\) if \(x_{n+p} = x_n\) for all \(n \geq -k\).

2 MAIN RESULTS

2.1 On the Difference Equation \(x_{n+1} = \frac{x_{n-9}}{1 + x_{n-4}x_{n-9}}\)

In this section we give a specific form of the first equation in the form

(3) \[x_{n+1} = \frac{x_{n-9}}{1 + x_{n-4}x_{n-9}}, \quad n = 0, 1, \ldots, \]

where the initial values are arbitrary non zero real numbers.
Theorem 1 Let \(\{ x_n \}_{n=-9}^{\infty} \) be a solution of Eq.(3). Then for \(n = 0, 1, ... \)

\[
\begin{align*}
x_{10n-9} &= p_{i=0}^{n-1} \left(\frac{1 + 2i p e}{1 + (2i + 1) p e} \right), & x_{10n-8} &= k_{i=0}^{n-1} \left(\frac{1 + 2i k d}{1 + (2i + 1) k d} \right), \\
x_{10n-7} &= h_{i=0}^{n-1} \left(\frac{1 + 2i h c}{1 + (2i + 1) h c} \right), & x_{10n-6} &= g_{i=0}^{n-1} \left(\frac{1 + 2i g b}{1 + (2i + 1) g b} \right), \\
x_{10n-5} &= f_{i=0}^{n-1} \left(\frac{1 + 2i f a}{1 + (2i + 1) f a} \right), & x_{10n-4} &= e_{i=0}^{n-1} \left(\frac{1 + (2i + 1) p e}{1 + (2i + 2) p e} \right), \\
x_{10n-3} &= d_{i=0}^{n-1} \left(\frac{1 + (2i + 1) k d}{1 + (2i + 2) k d} \right), & x_{10n-2} &= c_{i=0}^{n-1} \left(\frac{1 + (2i + 1) h c}{1 + (2i + 2) h c} \right), \\
x_{10n-1} &= b_{i=0}^{n-1} \left(\frac{1 + (2i + 1) g b}{1 + (2i + 2) g b} \right), & x_{10n} &= a_{i=0}^{n-1} \left(\frac{1 + (2i + 1) f a}{1 + (2i + 2) f a} \right),
\end{align*}
\]

where \(x_{-9} = p, x_{-8} = k, x_{-7} = h, x_{-6} = g, x_{-5} = f, x_{-4} = e, x_{-3} = d, x_{-2} = c, x_{-1} = b, x_{-0} = a. \)

Proof: For \(n = 0 \) the result holds. Now suppose that \(n > 0 \) and that our assumption holds for \(n - 1 \). That is:

\[
\begin{align*}
x_{10n-19} &= p_{i=0}^{n-2} \left(\frac{1 + 2i p e}{1 + (2i + 1) p e} \right), & x_{10n-18} &= k_{i=0}^{n-2} \left(\frac{1 + 2i k d}{1 + (2i + 1) k d} \right), \\
x_{10n-17} &= h_{i=0}^{n-2} \left(\frac{1 + 2i h c}{1 + (2i + 1) h c} \right), & x_{10n-16} &= g_{i=0}^{n-2} \left(\frac{1 + 2i g b}{1 + (2i + 1) g b} \right), \\
x_{10n-15} &= f_{i=0}^{n-2} \left(\frac{1 + 2i f a}{1 + (2i + 1) f a} \right), & x_{10n-14} &= e_{i=0}^{n-2} \left(\frac{1 + (2i + 1) p e}{1 + (2i + 2) p e} \right), \\
x_{10n-13} &= d_{i=0}^{n-2} \left(\frac{1 + (2i + 1) k d}{1 + (2i + 2) k d} \right), & x_{10n-12} &= c_{i=0}^{n-2} \left(\frac{1 + (2i + 1) h c}{1 + (2i + 2) h c} \right), \\
x_{10n-11} &= b_{i=0}^{n-2} \left(\frac{1 + (2i + 1) g b}{1 + (2i + 2) g b} \right), & x_{10n-10} &= a_{i=0}^{n-2} \left(\frac{1 + (2i + 1) f a}{1 + (2i + 2) f a} \right).
\end{align*}
\]
Now, it follows from Eq.(3) that

\[
x_{10n-9} = \frac{x_{10n-19}}{1 + x_{10n-14}x_{10n-19}} = \frac{p_i^{n-2} \left(\frac{1 + 2i pe}{1 + (2i + 1) pe} \right)}{1 + c_i^{n-2} \left(\frac{1 + (2i + 1) pe}{1 + (2i + 2) pe} \right) p_i^{n-2} \left(\frac{1 + 2ipe}{1 + (2i + 1) pe} \right)}
\]

\[
= \frac{p_i^{n-2} \left(\frac{1 + 2ipe}{1 + (2i + 1) pe} \right)}{1 + \left(\frac{pe}{1 + (2n - 2) pe} \right) \left(\frac{1 + 2ipe}{1 + (2i + 1) pe} \right)} = \frac{p_i^{n-2} \left(\frac{1 + 2ipe}{1 + (2i + 1) pe} \right)}{1 + \left(\frac{pe}{1 + (2n - 2) pe} \right) \left(\frac{1 + 2ipe}{1 + (2i + 1) pe} \right)}.
\]

Hence, we have

\[
x_{10n-9} = p_i^{n-1} \left(\frac{1 + 2ipe}{1 + (2i + 1) pe} \right).
\]

Similarly

\[
x_{10n-5} = \frac{x_{10n-15}}{1 + x_{10n-10}x_{10n-15}} = \frac{f_i^{n-2} \left(\frac{1 + 2ifa}{1 + (2i + 1) fa} \right)}{1 + a_i^{n-2} \left(\frac{1 + (2i + 1) fa}{1 + (2i + 2) fa} \right) f_i^{n-2} \left(\frac{1 + 2ifa}{1 + (2i + 1) fa} \right)}
\]

\[
= \frac{f_i^{n-2} \left(\frac{1 + 2ifa}{1 + (2i + 1) fa} \right) \left(\frac{1 + (2n - 2) fa}{1 + (2n - 2) fa} \right)}{1 + \left(\frac{fa}{1 + (2n - 2) fa} \right) \left(\frac{1 + (2n - 2) fa}{1 + (2n - 2) fa} \right) f_i^{n-2} \left(\frac{1 + 2ifa}{1 + (2i + 1) fa} \right) \left(\frac{1 + (2n - 2) fa}{1 + (2n - 1) fa} \right)}.
\]

Hence, we have

\[
x_{10n-5} = f_i^{n-1} \left(\frac{1 + 2ifa}{1 + (2i + 1) fa} \right).
\]

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 2 Eq.(3) has one equilibrium point which is the zero.
Proof: For the equilibrium points of Eq.(3), we can write

$$\overline{x} = \frac{\overline{x}}{1 + \overline{x}^2}.$$

Then we have

$$\overline{x} + \overline{x}^3 = \overline{x},$$

or,

$$\overline{x}^3 = 0.$$

Thus the equilibrium point of Eq.(3) is $\overline{x} = 0$.

Theorem 3 Every positive solution of Eq.(3) is bounded.

Proof: Let $\{x_n\}_{n=-9}^\infty$ be a solution of Eq.(3). It follows from Eq.(3) that

$$x_{n+1} = \frac{x_{n-9}}{1 + x_{n-4}x_{n-9}} \leq x_{n-9}. $$

Then

$$x_{n+1} \leq x_{n-9} \quad \text{for all} \quad n \geq 0.$$

Then the sequence $\{x_n\}_{n=0}^\infty$ is decreasing and so are bounded from above by

$$M = \max\{x_{-9}, x_{-8}, x_{-7}, x_{-6}, x_{-5}, x_{-4}, x_{-3}, x_{-2}, x_{-1}, x_0\}.$$

Numerical examples

For confirming the results of this section, we consider numerical examples which represent different types of solutions to Eq. (3).

Example 1. We consider $x_{-9} = 1.2$, $x_{-8} = 11$, $x_{-7} = 6$, $x_{-6} = 8$, $x_{-5} = 0.4$, $x_{-4} = 0.2$, $x_{-3} = 13$, $x_{-2} = 9$, $x_{-1} = 7$, $x_0 = 5$ See Fig. 1.

![Figure 1](plot_of_x(n+1)_(x(n-9)/(1+x(n-4)*x(n-9)))_to_x(n))
Example 2. See Fig. 2, since \(x_{-9} = 9, \ x_{-8} = 7, \ x_{-7} = 6, \ x_{-6} = 0.3, \ x_{-5} = 4, \ x_{-4} = -1.7, \ x_{-3} = -3, \ x_{-2} = -1.9, \ x_{-1} = 9, \ x_0 = -3\).

![Figure 2.](image-url)

2.2 On the Difference Equation

\[x_{n+1} = \frac{x_{n-9}}{-1 + x_{n-4}x_{n-9}} \]

In this section we obtain the solution of the second equation in the form

\[x_{n+1} = \frac{x_{n-9}}{-1 + x_{n-4}x_{n-9}}, \quad n = 0, 1, \ldots, \]

where the initial values are arbitrary non zero real numbers with \(x_{-9}x_{-4} \neq 1, \ x_{-8}x_{-3} \neq 1, \ x_{-7}x_{-2} \neq 1, \ x_{-6}x_{-1} \neq 1, \ x_{-5}x_0 \neq 1\).

Theorem 4 Let \(\{x_n\}_{n=-9}^{\infty}\) be a solution of Eq.(4). Then for \(n = 0, 1, \ldots\)

\[
\begin{align*}
\ x_{10n-9} &= \frac{p}{(-1 + pe)^n}, & x_{10n-8} &= \frac{k}{(-1 + kd)^n}, \\
\ x_{10n-7} &= \frac{h}{(-1 + hc)^n}, & x_{10n-6} &= \frac{g}{(-1 + gb)^n}, \\
\ x_{10n-5} &= \frac{f}{(-1 + fa)^n}, & x_{10n-4} &= e(-1 + pe)^n, \\
\ x_{10n-3} &= d(-1 + kd)^n, & x_{10n-2} &= c(-1 + hc)^n, \\
\ x_{10n-1} &= b(-1 + gb)^n, & x_{10n} &= a(-1 + fa)^n,
\end{align*}
\]

where \(x_{-9} = p, \ x_{-8} = k, \ x_{-7} = h, \ x_{-6} = g, \ x_{-5} = f, \ x_{-4} = e, \ x_{-3} = d, \ x_{-2} = c, \ x_{-1} = b, \ x_{-0} = a\).
Proof: For $n = 0$ the result holds. Now suppose that $n > 0$ and that our assumption holds for $n - 1$. That is:

\[
\begin{align*}
 x_{10n-19} &= \frac{p}{(-1 + pe)^{n-1}}, & x_{10n-18} &= \frac{k}{(-1 + kd)^{n-1}}, \\
 x_{10n-17} &= \frac{h}{(-1 + hc)^{n-1}}, & x_{10n-16} &= \frac{g}{(-1 + gb)^{n-1}}, \\
 x_{10n-15} &= \frac{f}{(-1 + fa)^{n-1}}, & x_{10n-14} &= e (-1 + pe)^{n-1}, \\
 x_{10n-13} &= d (-1 + kd)^{n-1}, & x_{10n-12} &= c (-1 + hc)^{n-1}, \\
 x_{10n-11} &= b (-1 + gb)^{n-1}, & x_{10n-10} &= a (-1 + fa)^{n-1}.
\end{align*}
\]

Now, it follows from Eq.(4) that

\[
\begin{align*}
x_{10n-9} &= \frac{x_{10n-19}}{-1 + x_{10n-14}x_{10n-19}} = \frac{p}{(-1 + pe)^{n-1}} \frac{1}{(-1 + pe)^{n-1} (-1 + pe)} \\
&= \frac{p}{(-1 + pe)^{n-1} (-1 + pe)}.
\end{align*}
\]

Hence, we have

\[
x_{10n-9} = \frac{p}{(-1 + pe)^2}.
\]

Similarly

\[
\begin{align*}
x_{10n-3} &= \frac{x_{10n-13}}{-1 + x_{10n-8}x_{10n-13}} = \frac{d (-1 + kd)^{n-1}}{-1 + (1 + kd)^{n-1} d (-1 + kd)^{n-1}} \\
&= \frac{d (-1 + kd)^{n-1}}{-1 + kd} = \frac{d (-1 + kd)^{n}}{-1 (-1 + kd) + kd}.
\end{align*}
\]

Hence, we have

\[
x_{10n-3} = d (-1 + kd)^{n}.
\]

Similarly, one can easily prove the other relations. Thus, the proof is completed.

Theorem 5 Eq.(4) has three equilibrium points which are $0, \sqrt{2}, -\sqrt{2}$.
Proof: For the equilibrium points of Eq.(4), we can write

$$\bar{x} = \frac{x}{-1 + \bar{x}^2}.$$

Then we have

$$-\bar{x} + \bar{x}^2 = \bar{x},$$

or,

$$\bar{x}(\bar{x}^2 - 2) = 0.$$

Thus the equilibrium points of Eq.(4) are 0, $\sqrt{2}, -\sqrt{2}$.

Lemma 1 It is easy to see that every solution of Eq.(4) is unbounded except in the following case.

Theorem 6 Eq.(4) has a periodic solutions of period ten iff $pe = kd = hc = gb = fa = 2$ and will be take the form \{p, k, h, g, f, e, d, c, b, a, p, k, h, g, f, e, d, c, b, a, \ldots\}.

Proof: First suppose that there exists a prime period ten solution

$$p, k, h, g, f, e, d, c, b, a, p, k, h, g, f, e, d, c, b, a, \ldots,$$

of Eq.(4), we see from the form of solution of Eq.(4) that

$$p = \frac{p}{(-1 + pe)^n}, \quad k = \frac{k}{(-1 + kd)^n},$$

$$h = \frac{h}{(-1 + hc)^n}, \quad g = \frac{g}{(-1 + gb)^n},$$

$$f = \frac{f}{(-1 + fa)^n}, \quad e = e (-1 + pe)^n,$$

$$d = d(-1 + kd)^n, \quad c = c(-1 + hc)^n,$$

$$b = b(-1 + gb)^n, \quad a = a(-1 + fa)^n,$$

or,

$$(-1 + pe)^n = 1, \quad (-1 + kd)^n = 1,$$

$$(-1 + hc)^n = 1, \quad (-1 + gb)^n = 1,$$

$$(-1 + fa)^n = 1.$$

Then

$$pe = kd = hc = gb = fa = 2.$$
Second suppose $pe = kd = hc = gb = fa = 2$. Then we see from Eq.(4) that

\[x_{10n-9} = p, \quad x_{10n-8} = k, \quad x_{10n-7} = h, \quad x_{10n-6} = g, \quad x_{10n-5} = f, \]

\[x_{10n-4} = c, \quad x_{10n-3} = d, \quad x_{10n-2} = e, \quad x_{10n-1} = b, \quad x_{10n} = a. \]

Thus we have a period ten solution and the proof is complete.

Numerical examples

Example 3. We consider $x_{-9} = 1.2$, $x_{-8} = 0.11$, $x_{-7} = 0.6$, $x_{-6} = 0.8$, $x_{-5} = 0.4$, $x_{-4} = 0.2$, $x_{-3} = 1.3$, $x_{-2} = 0.9$, $x_{-1} = 0.7$, $x_0 = 0.5$. See Fig. 3.

![Figure 3](plot of x(n+1)= (x(n−9)/(−1+x(n−4)*x(n−9))

Example 4. See Fig. 4, since $x_{-9} = 8$, $x_{-8} = -11$, $x_{-7} = 6$, $x_{-6} = -7$, $x_{-5} = 4$, $x_{-4} = 1/4$, $x_{-3} = -2/11$, $x_{-2} = 1/3$, $x_{-1} = -2/7$, $x_0 = 1/2$.
Solution of a Recursive Sequence of Order Ten

The following cases can be proved similarly.

2.3 On the Difference Equation \(x_{n+1} = \frac{x_{n-9}}{1 - x_{n-4}x_{n-9}} \)

In this section we get the solution of the third following equation

(5) \[x_{n+1} = \frac{x_{n-9}}{1 - x_{n-4}x_{n-9}}, \quad n = 0, 1, \ldots, \]

where the initial values are arbitrary non zero real numbers.

Theorem 7 Let \(\{x_n\} \) be a solution of Eq.(5). Then for \(n = 0, 1, \ldots \)

\[
\begin{align*}
x_{10n-9} &= \sum_{i=0}^{n-1} \frac{1 - 2ipe}{1 - (2i + 1)pe}, \\
x_{10n-7} &= \sum_{i=0}^{n-1} \frac{1 - 2ithc}{1 - (2i + 1)h}c, \\
x_{10n-5} &= \sum_{i=0}^{n-1} \frac{1 - 2ifac}{1 - (2i + 1)f}a, \\
x_{10n-3} &= \sum_{i=0}^{n-1} \frac{1 - (2i + 1)kd}{1 - (2i + 2)k}d, \\
x_{10n-1} &= \sum_{i=0}^{n-1} \frac{1 - (2i + 1)gb}{1 - (2i + 2)g}b, \\
x_{10n} &= \sum_{i=0}^{n-1} \frac{1 - (2i + 1)f}{1 - (2i + 2)f}a,
\end{align*}
\]

where \(x_{-9} = p, x_{-8} = k, x_{-7} = h, x_{-6} = g, x_{-5} = f, x_{-4} = e, x_{-3} = d, x_{-2} = c, x_{-1} = b, x_{0} = a. \)
Theorem 8 Eq. (5) has a unique equilibrium point which is the number zero.

Example 5. Assume that $x_{-9} = 8$, $x_{-8} = -11$, $x_{-7} = 6$, $x_{-6} = -7$, $x_{-5} = 4$, $x_{-4} = 0.2$, $x_{-3} = 1.1$, $x_{-2} = 0.6$, $x_{-1} = -2$, $x_0 = 4$ see Fig. 5

Example 6. See Fig. 6. for $x_{-9} = 3$, $x_{-8} = 9$, $x_{-7} = 0.8$, $x_{-6} = 0.7$, $x_{-5} = 0.4$, $x_{-4} = 2$, $x_{-3} = 13$, $x_{-2} = 6$, $x_{-1} = 0.2$, $x_0 = 4$
2.4 On the Difference Equation

Here we obtain a form of the solutions of the equation

\[x_{n+1} = \frac{x_{n-9}}{-1 - x_{n-4}x_{n-9}} \]

where the initial values are arbitrary non-zero real numbers with \(x_9x_4 \neq -1, x_8x_3 \neq -1, x_7x_2 \neq -1, x_6x_1 \neq -1, x_5x_0 \neq -1 \).

Theorem 9 Let \(\{x_n\}_{n=-9}^{\infty} \) be a solution of Eq.(6). Then for \(n = 0, 1, \ldots \)

\[
\begin{align*}
x_{10n-9} &= \frac{(-1)^n p}{(1+pe)^n}, \\
x_{10n-7} &= \frac{(-1)^n h}{(1+hc)^n}, \\
x_{10n-5} &= \frac{(-1)^n f}{(1+fa)^n}, \\
x_{10n-3} &= d(-1)^n (1+kd)^n, \\
x_{10n-1} &= b(-1)^n (1+gb)^n, \\
x_{10n-8} &= \frac{(-1)^n k}{(1+kd)^n}, \\
x_{10n-6} &= \frac{(-1)^n g}{(1+gb)^n}, \\
x_{10n-4} &= (-1)^n e (1+pe)^n, \\
x_{10n-2} &= c(-1)^n (1+hc)^n, \\
x_{10n} &= a(-1)^n (1+fa)^n,
\end{align*}
\]

where \(x_9 = p, x_8 = k, x_7 = h, x_6 = g, x_5 = f, x_4 = e, x_3 = d, x_2 = c, x_1 = b, x_0 = a \).

Theorem 10 Eq.(6) has a unique equilibrium point which is the number zero.

Lemma 2 It is easy to see that every solution of Eq.(6) is unbounded except in the following case.

Theorem 11 Eq.(6) has a periodic solutions of period ten iff \(pe = kd = hc = gb = fa = -2 \) and will be take the form \(\{p, k, h, g, f, e, d, c, b, a, p, k, h, g, f, e, d, c, b, a, \ldots\} \).

Example 7. Consider \(x_9 = 13, x_8 = 9, x_7 = 1.8, x_6 = 0.7, x_5 = 0.4, x_4 = 0.2, x_3 = 1.3, x_2 = 6, x_1 = 0.2, x_0 = 4 \) see Fig. 7

Example 8. Fig. 8. shows the solutions when \(x_9 = 13, x_8 = -3, x_7 = 0.11, x_6 = 4, x_5 = 0.14, x_4 = -2/13, x_3 = 2/3, x_2 = -20/11, x_1 = -1/2, x_0 = -10/7 \).
Figure 7.

Figure 8.

References

[4] C. Cinar, *On the difference equation* $x_{n+1} = \frac{x_{n-1}}{-1 + x_n x_{n-1}}$, Appl. Math. Comp., 158, 2004, 813-816.

[5] C. Cinar, *On the positive solutions of the difference equation* $x_{n+1} = \frac{a x_{n-1}}{1 + b x_n x_{n-1}}$, Appl. Math. Comp., 156, 2004, 587-590.

[6] C. Cinar, R. Karatas and I. Yalcinkaya, *On solutions of the difference equation* $x_{n+1} = \frac{x_{n-3}}{-1 + x_n x_{n-1} x_{n-2} x_{n-3}}$, Mathematica Bohemica, 132(3), 2007, 257-261.

[9] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, *On the difference equations* $x_{n+1} = \frac{\alpha x_{n-k}}{\beta + \gamma \prod_{i=0}^{k} x_{n-i}}$, J. Conc. Appl. Math., 5(2), 2007, 101-113.

[31] R. Karatas and C. Cinar, *On the solutions of the difference equation*

\[x_{n+1} = \frac{\alpha x_{n-(2k+2)}}{-a + \prod_{i=0}^{2k+2} x_{n-i}}, \]

[34] M. R. S. Kulenovic and G. Ladas, *On period two solutions of*

\[x_{n+1} = \frac{\alpha + \beta x_n + \gamma x_{n-1}}{A x_n + B x_{n-1}}, \]

\[x_{n+1} = \frac{x_{n-3}}{1 + x_{n-1}}, \]

\[x_{n+1} = x_{n-1}/g(x_n), \]

[38] E. M. E. Zayed and M. A. El-Moneam, *On the rational recursive sequence*

\[x_{n+1} = \frac{\alpha + \beta x_n + \gamma x_{n-1}}{A x_n + B x_{n-1}}, \]

[40] Y. Zheng, *Periodic solutions with the same period of the recursion* \(x_{n+1} = \frac{\alpha + \beta x_n + \gamma x_{n-1}}{A\alpha + Bx_n + Cx_{n-1}} \), *Differential Equations Dynam. Systems*, 5, 1997, 51–58.

Elsayed M. Elsayed
King AbdulAziz University, Faculty of Science
Department of Mathematics
P. O. Box 80203, Jeddah 21589, Saudi Arabia.

Permanent address:
Mansoura University, Faculty of Science
Department of Mathematics
Mansoura 35516, Egypt.
e-mail: emelsayed@mans.edu.eg, emmelsayed@yahoo.com.