Approximation of common fixed points for a finite family of Zamfirescu operators

Shaini Pulickakunnel, Neeta Singh

Abstract

In this paper we introduce a new composite implicit iteration scheme with errors and a strong convergence theorem is established for a finite family of Zamfirescu operators in arbitrary normed spaces. As a corollary we observe that the iteration scheme introduced by Su and Li (18) converges to the common fixed point of a finite family of Zamfirescu operators.

2010 Mathematics Subject Classification: 47H10, 47H17, 54H25.

Key words and phrases: Implicit iteration process with errors, Strong convergence, Common fixed point, Zamfirescu operators, Normed space.

1 Introduction and preliminary definitions

In recent years, iterative techniques for approximating the common fixed points of a finite family of pseudocontractive mappings, asymptotically nonexpansive mappings, asymptotically quasi-nonexpansive mappings or nonexpansive mappings in Hilbert spaces, uniformly convex Banach spaces or arbitrary Banach spaces have been considered by several authors. [eg., 4, 9, 12, 17, 19, 20, 21]. In 2001, Xu and Ori [22] introduced an implicit iteration process for a finite family of nonexpansive mappings as follows:

Let K be a nonempty closed convex subset of a normed space E. Let

\[X = \bigcap_{i=1}^{n} F(T_i), \]

where $F(T_i) = \{x \in K : d(x, T_i(x)) = d(x, T_i)\}$ for $i = 1, 2, \ldots, n$. Let

\[T_i : K \rightarrow K \]

be nonexpansive mappings for $i = 1, 2, \ldots, n$. Then T_i has a unique fixed point x_i in K. Let

\[x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T_i(x_n), \]

where α_n is a sequence in $(0, 1)$ for all $n = 0, 1, 2, \ldots$. If $\alpha_n = 1/n$, then the sequence $\{x_n\}$ converges strongly to a common fixed point of T_1, T_2, \ldots, T_n.
\{T_1, T_2, ..., T_N\} be \(N \) nonexpansive self-maps of \(K \). Then for an arbitrary point \(x_0 \in K \), and \(\{\alpha_n\} \subset (0, 1) \), the sequence \(\{x_n\} \) generated can be written in the compact form as follows:

\[(1) \quad x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n, \quad \forall n \geq 1,\]

where \(T_n = T_{n(modN)} \) (the \(modN \) function takes values in \(I = \{1, 2, 3, ..., N\} \)).

Xu and Ori proved the weak convergence of this process to a common fixed point of a finite family of nonexpansive mappings defined in a Hilbert space.

In 2004, Osilike [12] extended the results of Xu and Ori from nonexpansive mappings to strictly pseudocontractive mappings.

Inspired by the above facts, in 2006 Su and Li [18] introduced a new two-step implicit iteration process which is defined as follows:

Let \(E \) be a real Banach space and \(K \) a nonempty closed convex subset of \(E \). Let \(\{T_i\}_{i=1}^N \) be \(N \) strictly pseudocontractive self-maps of \(K \). From arbitrary \(x_0 \in K \), define the sequence \(\{x_n\} \) by

\[(2) \quad x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n y_n, \quad y_n = \beta_n x_{n-1} + (1 - \beta_n) T_n x_n,\]

where \(T_n = T_{n(modN)} \) and \(\{\alpha_n\}, \{\beta_n\} \subset [0, 1] \).

Using this iteration they proved a convergence theorem for a finite family of strictly pseudocontractive maps. It is observed that the class of Zamfirescu operators is independent (see Rhoades [16]) of the class of strictly pseudocontractive operators.

Consideration of error terms in iterative processes is an important part of the theory. Several authors have introduced and studied one-step, two-step as well as multi-step iteration schemes with errors to approximate fixed points of various classes of mappings in Banach spaces [2, 5, 6, 7, 8, 10, 13, 14].

Let \(K \) be a nonempty closed convex subset of a normed space \(E \). Motivated by the above facts, we introduce the following composite implicit iteration processes with errors for a finite family of Zamfirescu operators \(\{T_i\}_{i=1}^N : K \to K \), and define the sequences \(\{x_n\} \subset K \) as follows:

\[x_0 \in K,\]

\[x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n y_n + u_n,\]

\[y_n = \beta_n x_{n-1} + (1 - \beta_n) T_n x_n + v_n,\]
where $T_n = T_{n(modN)}$ (the modN function takes values in $I = \{1, 2, 3, ..., N\}$),

$\{u_n\}$ and $\{v_n\}$ are two summable sequences in E, i.e., $\sum_{n=0}^{\infty} \|u_n\| < \infty$, $\sum_{n=0}^{\infty} \|v_n\| < \infty$, and $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in $[0, 1]$, satisfying certain restrictions.

In particular if $u_n = 0, v_n = 0$ for all $n > 0$, then the iteration scheme obtained is the scheme introduced by Su and Li.

We recall the following definitions in a metric space (X, d), from Berinde [1, p.6, 50-51, 131] and Ciric [3, p.268].

A mapping $T : X \to X$ is called an a-contraction if
\[(z_1) \quad d(Tx, Ty) \leq ad(x, y) \text{ for all } x, y \in X, \text{ where } a \in [0, 1).\]

The map T is called a Kannan mapping if there exists $b \in [0, \frac{1}{2})$ such that
\[(z_2) \quad d(Tx, Ty) \leq b[d(x, Tx) + d(y, Ty)] \text{ for all } x, y \in X.\]

A similar definition is due to Chatterjea : there exists $c \in [0, \frac{1}{2})$ such that
\[(z_3) \quad d(Tx, Ty) \leq c[d(x, Ty) + d(y, Tx)] \text{ for all } x, y \in X.\]

It is known, see Rhoades [15] that $(z_1), (z_2)$, and (z_3) are independent contractive conditions. An operator T which satisfies at least one of the contractive conditions $(z_1), (z_2)$ and (z_3) is called a Zamfirescu operator or a Z-operator. Alternatively we say that T satisfies Condition Z.

The main purpose of this paper is to establish a strong convergence theorem to approximate common fixed points of a finite family of Zamfirescu operators in normed spaces using the new iteration scheme defined above.

We need the following lemma.

Lemma 1 [11]. Let $\{r_n\}, \{s_n\}, \{t_n\}$ and $\{k_n\}$ be sequences of nonnegative numbers satisfying
\[r_{n+1} \leq (1 - s_n)r_n + s_nt_n + k_n, \quad \text{for all } n \geq 1.\]

If $\sum_{n=1}^{\infty} s_n = \infty$, $\lim_{n \to \infty} t_n = 0$ and $\sum_{n=1}^{\infty} k_n < \infty$ hold, then $\lim_{n \to \infty} r_n = 0$.

2 Main result

Theorem 2 Let K be a nonempty closed convex subset of a normed space E. Let $\{T_1, T_2, T_3, ..., T_N\} : K \to K$ be N, Zamfirescu operators with $F = \ldots$
\(\cap_{i=1}^{N} F(T_i) \neq \emptyset \) (\(F \) denotes the set of common fixed points of \(\{T_1, T_2, T_3, \ldots, T_N\} \)).

Let \(\{u_n\} \) and \(\{v_n\} \) be two summable sequences in \(E \), and \(\{\alpha_n\} \) and \(\{\beta_n\} \) be two real sequences in \([0, 1]\) satisfying the following conditions:

(i) \(\sum_{n=1}^{\infty} \beta_n (1 - \alpha_n) = \infty \);

(ii) \(\|v_n\| = o(\beta_n) \).

For any \(x_0 \in K \), let the sequence \(\{x_n\} \subset K \) be defined by

\[
\begin{align*}
{x_n} & = \alpha_n x_{n-1} + (1 - \alpha_n) T_n y_n + u_n \\
y_n & = \beta_n x_{n-1} + (1 - \beta_n) T_n x_n + v_n
\end{align*}
\]

where \(T_n = T_{n(\text{mod}N)} \) (the mod\(N \) function takes values in \(I = \{1, 2, 3, \ldots, N\} \)). Then \(\{x_n\} \) converges strongly to a common fixed point of \(\{T_1, T_2, T_3, \ldots, T_N\} \).

Proof. It follows from the assumption \(F = \cap_{i=1}^{N} F(T_i) \neq \emptyset \), that the operators \(\{T_1, T_2, T_3, \ldots, T_N\} \) have a common fixed point in \(K \), say \(p \). Consider \(x, y \in K \).

Since each \(T_i \) is a Zamfirescu operator, each \(T_i \) satisfies at least one of the conditions \((z_1), (z_2)\) and \((z_3)\).

If \((z_2)\) holds, then for any \(x, y \in K \)

\[
\|T_i x - T_i y\| \leq b [\|x - T_i x\| + \|y - T_i y\|] \\
\leq b [\|x - T_i x\| + \|y - x\| + \|x - T_i x\| + \|T_i x - T_i y\|],
\]

which implies

\[
(1 - b) \|T_i x - T_i y\| \leq b \|x - y\| + 2b \|x - T_i x\|,
\]

since \(0 \leq b < \frac{1}{2} \) we get

\[
(4) \quad \|T_i x - T_i y\| \leq \frac{b}{1 - b} \|x - y\| + \frac{2b}{1 - b} \|x - T_i x\|.
\]

Similarly, if \((z_3)\) holds, then we have for any \(x, y \in K \)

\[
\|T_i x - T_i y\| \leq c [\|x - T_i y\| + \|y - T_i x\|] \\
\leq c [\|x - T_i x\| + \|T_i x - T_i y\| + \|y - x\| + \|x - T_i x\|]
\]

which implies

\[
(1 - c) \|T_i x - T_i y\| \leq c \|x - y\| + 2c \|x - T_i x\|,
\]
since $0 \leq c < \frac{1}{2}$ we get

\begin{equation}
\|T_i x - T_i y\| \leq \frac{c}{1 - c} \|x - y\| + \frac{2c}{1 - c} \|x - T_i x\|.
\end{equation}

Denote

\begin{equation}
\delta = \max \left\{ a, \frac{b}{1 - b}, \frac{c}{1 - c} \right\}.
\end{equation}

Then we have $0 \leq \delta < 1$ and, in view of (5), (4), (5) and (6), it results that the inequality

\begin{equation}
\|T_i x - T_i y\| \leq \delta \|x - y\| + 2\delta \|x - T_i x\|
\end{equation}

holds for all $x, y \in K$ and for every $i \in \{1, 2, 3, \ldots, N\}$.

Now, since $T_i p = p$, $T_n = T_n^{(\text{mod}N)}$ and the modN function takes values in $\{1, 2, 3, \ldots, N\}$, for $y = x_n$ and $x = p$, the above inequality (7) gives the following result

\begin{equation}
\|T_n x_n - p\| \leq \delta \|x_n - p\|
\end{equation}

Again, with $y = y_n$ and $x = p$, in (7) we get

\begin{equation}
\|T_n y_n - p\| \leq \delta \|y_n - p\|.
\end{equation}

Now, let $\{x_n\}$ be the implicit iteration process with errors defined by (3) and $x_0 \in K$ be arbitrary.

Then

\begin{align*}
\|x_n - p\| &= \|\alpha_n x_{n-1} + (1 - \alpha_n)T_n y_n + u_n - p\| \\
&= \|\alpha_n x_{n-1} + (1 - \alpha_n)T_n y_n + u_n - (\alpha_n + 1 - \alpha_n)p\| \\
&= \|\alpha_n (x_{n-1} - p) + (1 - \alpha_n)(T_n y_n - p) + u_n\| \\
&\leq \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n) \|T_n y_n - p\| + \|u_n\|.
\end{align*}

Using (9) in the above inequality we obtain that

\begin{equation}
\|x_n - p\| \leq \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n) \|y_n - p\| + \|u_n\|
\end{equation}
Substitute for y_n from (3) we get
\[
\|x_n - p\| \leq \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n)\delta \|\beta_n x_{n-1} - 1\|
+ (1 - \beta_n)T_n x_n + v_n - p\| + \|u_n\|
\]
\[
= \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n)\delta \|\beta_n x_{n-1} - 1\|
+ (1 - \beta_n)T_n x_n + v_n - (\beta_n + 1 - \beta_n)p\| + \|u_n\|
\]
\[
= \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n)\delta \|\beta_n(x_{n-1} - p)\|
+ (1 - \beta_n)(T_n x_n - p) + v_n\| + \|u_n\|
\]
\[
\leq \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n)\delta \left\{ \beta_n \|x_{n-1} - p\| \right.
+ (1 - \beta_n) \|T_n x_n - p\| + \|v_n\| \left\} + \|u_n\|.
\]
Using (8) in the above inequality we get that
\[
\|x_n - p\| \leq \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n)\delta \left\{ \beta_n \|x_{n-1} - p\|
+ (1 - \beta_n) \| \|x_{n-1} - p\| + (1 - \alpha_n)\delta \| \|x_{n-1} - p\| + (1 - \alpha_n)\delta \|v_n\| + \|u_n\|
\]
that is
\[
(1 - (1 - \alpha_n)(1 - \beta_n)\delta^2) \|x_n - p\| \leq \left[\alpha_n + (1 - \alpha_n)\beta_n \delta \right] \|x_{n-1} - p\|
+ (1 - \alpha_n)\delta \|v_n\| + \|u_n\|
\]
since $0 \leq (1 - \alpha_n)(1 - \beta_n)\delta^2 < 1$, we have
\[
(10) \|x_n - p\| \leq \frac{\left[\alpha_n + (1 - \alpha_n)\beta_n \delta \right] \|x_{n-1} - p\| + (1 - \alpha_n)\delta \|v_n\| + \|u_n\|}{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2}
\]
\[
= \frac{\alpha_n + (1 - \alpha_n)\beta_n \delta}{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2} \|x_{n-1} - p\|
+ (1 - \alpha_n)\delta \|v_n\| + \|u_n\|
\]
Let
\[
A_n = \alpha_n + (1 - \alpha_n)\beta_n \delta
\]
\[
B_n = 1 - (1 - \alpha_n)(1 - \beta_n)\delta^2.
\]
Consider
\[
1 - \frac{A_n}{B_n} = 1 - \frac{\alpha_n + (1 - \alpha_n)\beta_n \delta}{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2}
\]
\[
= \frac{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2 - [\alpha_n + (1 - \alpha_n)\beta_n \delta]}{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2}
\]
\begin{equation}
1 - \frac{[1 - \alpha_n](1 - \beta_n)\delta^2 + \alpha_n + (1 - \alpha_n)\beta_n\delta]}{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2}
\end{equation}

Since $1 - (1 - \alpha_n)(1 - \beta_n)\delta^2 \leq 1$, from (11) we have

$$1 - \frac{A_n}{B_n} \geq 1 - \frac{[1 - \alpha_n](1 - \beta_n)\delta^2 + \alpha_n + (1 - \alpha_n)\beta_n\delta]}{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2}$$

that is

$$A_n \leq (1 - \alpha_n)(1 - \beta_n)\delta^2 + \alpha_n + (1 - \alpha_n)\beta_n\delta.$$

Using the facts that $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$ and $\delta < 1$, we get

\begin{equation}
\frac{A_n}{B_n} \leq (1 - \alpha_n)(1 - \beta_n) + \alpha_n + (1 - \alpha_n)\beta_n\delta
\end{equation}

Hence from (10) and (12) we have

$$\|x_n - p\| \leq \left[1 - (1 - \alpha_n)\beta_n(1 - \alpha_n)\right]\|x_{n-1} - p\|$$

$$+ \frac{(1 - \alpha_n)\delta \|v_n\|}{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2} + \frac{(1 - \alpha_n)\beta_n\delta d_n}{1 - (1 - \alpha_n)(1 - \beta_n)\delta^2}\|u_n\|$$

which, by the inequality

$$1 - \delta \leq 1 - (1 - \alpha_n)(1 - \beta_n)\delta^2,$$

implies that

$$\|x_n - p\| \leq \left[1 - (1 - \alpha_n)\beta_n(1 - \alpha_n)\right]\|x_{n-1} - p\| + \frac{(1 - \alpha_n)\delta}{1 - \delta} \|v_n\| + \frac{1}{1 - \delta} \|u_n\|.$$

Since $\|v_n\| = o(\beta_n)$ by assumption, let $\|v_n\| = d_n\beta_n$ and $d_n \to 0$. Therefore from the above inequality we obtain that

$$\|x_n - p\| \leq \left[1 - (1 - \delta)\beta_n(1 - \alpha_n)\right]\|x_{n-1} - p\|$$

$$+ \frac{(1 - \delta)(1 - \alpha_n)d_n\beta_n}{(1 - \delta)^2} + \frac{1}{1 - \delta} \|u_n\|.$$
Setting $r_n = \|x_{n-1} - p\|$, $s_n = (1 - \delta)\beta_n(1 - \alpha_n)$, $t_n = \frac{\delta}{(1 - \delta)^2}d_n$, $k_n = \frac{1}{1 - \delta}\|u_n\|$, and using the facts that $0 \leq \delta < 1$, $0 \leq \alpha_n \leq 1$, $0 \leq \beta_n \leq 1$, $\sum_{n=1}^{\infty} \beta_n(1 - \alpha_n) = \infty$, $d_n \to 0$ and $\sum_{n=1}^{\infty} \|u_n\| < \infty$, it follows from Lemma 1 that
$$\lim_{n \to \infty} \|x_n - p\| = 0$$
which implies that $x_n \to p \in F$. Hence the proof.

Corollary 3 Let K be a nonempty closed convex subset of a normed space E, and let $\{T_1, T_2, T_3, ..., T_N\} : K \to K$ be N Zamfirescu operators with $F = \bigcap_{i=1}^{N} F(T_i) \neq \phi$ ($F(T_i)$ denotes the set of fixed points of T_i). Let $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$ be two real sequences satisfying the condition $\sum_{n=1}^{\infty} (1 - \alpha_n)\beta_n = \infty$. For $x_0 \in K$, let the sequence $\{x_n\}$ be defined by
$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n y_n$$
$$y_n = \beta_n x_{n-1} + (1 - \beta_n) T_n x_n$$
where $T_n = T_{n(\text{mod} N)}$. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_1, T_2, T_3, ..., T_N\}$.

Remark 4 Chatterjea’s and Kannan’s contractive conditions (z_2) and (z_3) are both included in the class of Zamfirescu operators and so their convergence theorems for the implicit iteration process with errors defined by (3) are obtained in Theorem 2.

References

Approximation of common fixed points...

Shaini Pulickakunnel and Neeta Singh
Department of Mathematics
University of Allahabad
Allahabad-211002, India
e-mail: shainipv@gmail.com