Characterizations of weak Cauchy sn-symmetric spaces

Xun Ge, Jinjin Li

Abstract

This paper proves that a space X is a weak Cauchy sn-symmetric space iff it is a sequentially-quotient, π-image of a metric space, which answers a question posed by Z. Li.

2000 Mathematics Subject Classification: 54C05, 54C10, 54E40.

Key words and phrases: sn-symmetric space, Weak Cauchy condition, Sequentially-quotient mapping, π-mapping.

1 Introduction

sn-symmetric spaces is an important generalization of symmetric spaces. Recently, Y. Ge and S. Lin [10] investigate sn-symmetric spaces and obtained some interesting results. However, how characterize sn-symmetric spaces as images of metric spaces? This question is still open. As is well known, each

1Received 17 June, 2008

Accepted for publication (in revised form) 22 January, 2009
weak Cauchy symmetric space can be characterized as a quotient, \(\pi\)-image of a metric space [11]. By viewing this result, Z. Li posed the following question [12, Question 3.2].

Question 1 How characterize weak Cauchy sn-symmetric spaces by means of certain \(\pi\)-images of metric spaces?

In this paper, we prove that a space \(X\) is a weak Cauchy sn-symmetric space iff it is a sequentially-quotient, \(\pi\)-image of a metric space, which answers Question 1 affirmatively.

Throughout this paper, all spaces are assumed to be Hausdorff, and all mappings are continuous and onto. \(\mathbb{N}\) denotes the set of all natural numbers.

Let \(P\) be a subset of a space \(X\) and \(\{x_n\}\) be a sequence in \(X\) converging to \(x\). \(\{x_n\}\) is eventually in \(P\) if \(\{x_n : n > k\} \cup \{x\} \subset P\) for some \(k \in \mathbb{N}\); it is frequently in \(P\) if \(\{x_{n_k}\}\) is eventually in \(P\) for some subsequence \(\{x_{n_k}\}\) of \(\{x_n\}\).

Let \(\mathcal{P}\) be a family of subsets of a space \(X\) and \(x \in X\). \(\bigcup \mathcal{P}\) and \(\bigcap \mathcal{P}\) denote the union \(\bigcup \{P : P \in \mathcal{P}\}\) and the intersection \(\bigcap \{P : P \in \mathcal{P}\}\), respectively. \((\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}\) and \(st(x, \mathcal{P}) = \bigcup (\mathcal{P})_x\). A sequence \(\{P_n : n \in \mathbb{N}\}\) of subsets of a space \(X\) is abbreviated to \(\{P_n\}\). A point \(b = (\beta_n)_{n \in \mathbb{N}}\) of a Tychonoff-product space is abbreviated to \((\beta_n)\).

2 Definitions and Remarks

Definition 1 ([4]) Let \(X\) be a space and \(x \in X\). \(P\) is called a sequential neighborhood of \(x\), if each sequence \(\{x_n\}\) converging to \(x\) is eventually in \(P\).

Remark 1 ([5]) \(P\) is a sequential neighborhood of \(x\) iff each sequence \(\{x_n\}\) converging to \(x\) is frequently in \(P\).
Definition 2 ([6]) Let \mathcal{P} be a family of subsets of a space X and $x \in X$. \mathcal{P} is called a network at x in X, if $x \in \bigcap \mathcal{P}$ and for each neighborhood U of x, there exists $P \in \mathcal{P}$ such that $P \subset U$. Moreover, \mathcal{P} is called an sn-network at x in X if in addition each element of \mathcal{P} is also a sequential neighborhood of x.

Definition 3 Let X be a set. A non-negative real valued function d defined on $X \times X$ is called a d-function on X if $d(x, x) = 0$ and $d(x, y) = d(y, x)$ for any $x, y \in X$.

Let d be a d-function on a space X. For $x \in X$ and $n \in \mathbb{N}$, put $S_n(x) = \{y \in X : d(x, y) < 1/n\}$.

Definition 4 ([10]) (X, d) is called an sn-symmetric space and d is called an sn-symmetric on X, if $\{S_n(x) : n \in \mathbb{N}\}$ is an sn-network at x in X for each $x \in X$.

For subsets A and B of an sn-symmetric space (X, d), we write $d(A) = \sup\{d(x, y) : x, y \in A\}$ and $d(A, B) = \inf\{d(x, y) : x \in A$ and $y \in B\}$.

Definition 5 ([11]) Let (X, d) be an sn-symmetric space.

1. A sequence $\{x_n\}$ in X is called d-Cauchy if for each $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon$ for all $n, m > k$.

2. (X, d) is called satisfying weak Cauchy condition if each convergent sequence has a d-Cauchy subsequence.

3. An sn-symmetric space satisfying weak Cauchy condition is called a weak Cauchy sn-symmetric space.

Remark 2 ([13]) (X, d) satisfies weak Cauchy condition iff for each convergent sequence L in X and for each $\varepsilon > 0$, there exists a subsequence L' of L such that $d(L') < \varepsilon$.

Definition 6 ([8]) Let P be a cover of a space X. P is called a cs*-cover if for each convergent sequence L, there exists $P \in P$ such that L is frequently in P.

Definition 7 ([14]) Let $\{P_n\}$ be a sequence of covers of a space X such that P_{n+1} refines P_n for each $n \in \mathbb{N}$. $P = \bigcup\{P_n : n \in \mathbb{N}\}$ is called a σ-strong network of X, if $\{st(x, P_n) : n \in \mathbb{N}\}$ is a network at x in X for each $x \in X$. Moreover, if in addition P_n is also a cs*-cover of X for each $n \in \mathbb{N}$, then P is called a σ-strong network consisting of cs*-covers.

Definition 8 ([7]). Let $f : X \rightarrow Y$ be a mapping. f is called a sequentially-quotient mapping if for each convergent sequence S in Y, there exists a convergent sequence L in X such that $f(L)$ is a subsequence of S.

Remark 3 Sequentially-quotient mappings are namely presequential mappings in the sense of J. R. Boone (see [2, 3, 9]).

Definition 9 ([10]) Let (X, d) be an sn-symmetric and let $f : X \rightarrow Y$ be a mapping. f is called a π-mapping, if for each $y \in Y$ and each neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$.

3 The Main Results

Lemma 1 Let (X, d) be an sn-symmetric space, $n \in \mathbb{N}$ and $x \in X$. Put $P_n = \{P \subset X : d(P) < 1/n\}$, then $st(x, P_n) = S_n(x)$.

Proof. If $y \in st(x, P_n)$, then there exists $P \in P_n$ such that $x, y \in P$. So $d(x, y) \leq d(P) < 1/n$, and hence $y \in S_n(x)$. On the other hand, if $y \in S_n(x)$, then $d(x, y) < 1/n$. So $\{x, y\} \in P_n$, thus $y \in st(x, P_n)$. Consequently, $st(x, P_n) = S_n(x)$.
Lemma 2 Let $\mathcal{P} = \bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \}$ be a σ-strong network of X and $x \in X$. If $P_n \in (\mathcal{P}_n)_x$ for each $n \in \mathbb{N}$, then $\{P_n\}$ is a network at x in X.

Proof. Let $x \in U$ with U open in X. Since \mathcal{P} is a σ-strong network of X, there exists $m \in \mathbb{N}$ such that $st(x, P_m) \subset U$. Note that $P_m \subset st(x, P_m)$, so $x \in P_m \subset U$. This proves that $\{P_n\}$ is a network at x in X.

Lemma 3 Let $\{\mathcal{P}_n\}$ be a sequence of cs^*-covers of a space X, and S be a sequence in X converging to x. Then there is a subsequence S' of S such that for each $n \in \mathbb{N}$, S' is eventually in P_n for some $P_n \in \mathcal{P}_n$.

Proof. Since \mathcal{P}_1 is a cs^*-cover of X and S is a convergent sequence in X, there is a subsequence S_1 of S such that $S_1 \cup \{x\} \subset P_1$ for some $P_1 \in \mathcal{P}_1$. Put x_1 is the first term of S_1. Similarly, \mathcal{P}_2 is a cs^*-cover of X and S_1 is a convergent sequence in X, there is a subsequence S_2 of S_1 such that $S_2 \cup \{x\} \subset P_2$ for some $P_2 \in \mathcal{P}_2$. Put x_2 is the second term of S_2. Assume that $x_1, x_2, \cdots, x_{n-1}$, $S_1, S_2, \cdots, S_{n-1}$, and $P_1, P_2, \cdots, P_{n-1}$ have been constructed as the above method. we construct x_n, S_n and P_n as follows. Since \mathcal{P}_n is a cs^*-cover of X and S_{n-1} is a convergent sequence in X, there is a subsequence S_n of S_{n-1} such that $S_n \cup \{x\} \subset P_n$ for some $P_n \in \mathcal{P}_n$. Put x_n is the n-th term of S_n. By the inductive method, we construct x_n, S_n and P_n for each $n \in \mathbb{N}$. Put $S' = \{x_n\}$, then S' is a subsequence of S. For each $n \in \mathbb{N}$, $\{x_k, x\} \in S_k \subset S_n \subset P_n$ for all $k > n$, so S' is eventually in P_n.

Now we give the main theorem in this paper.

Theorem 1 The following are equivalent for a space X.

(1) X is a weak Cauchy sn-symmetric space.

(2) X has a σ-strong network consisting of cs^*-covers.

(3) X is a sequentially-quotient, π-image of a metric space.
Proof. (1) \implies (2): Let (X, d) be a weak Cauchy sn-symmetric space. For each $n \in \mathbb{N}$, put $P_n = \{ P \subset X : d(P) < 1/n \}$. By Lemma 1, $st(x, P_n) = S_n(x)$ for each $x \in X$ and each $n \in \mathbb{N}$. $\{ st(x, P_n) : n \in \mathbb{N} \}$ is a network at x in X for each $x \in X$ because $\{ S_n(x) : n \in \mathbb{N} \}$ is a network at x in X. It is clear that $P_{n+1} \subset P_n$, so P_{n+1} refines P_n. Thus $\{ P_n \}$ is a σ-strong network of X.

Let $n \in \mathbb{N}$ and $L = \{ x_k \}$ be a sequence in X converging to x. It suffices to prove that L is frequently in P for some $P \in P_n$. Without loss of generality, we may assume that $d(x, x_k) < 1/n$ for each $k \in \mathbb{N}$. Since (X, d) satisfying weak Cauchy condition, by Remake 2.7, there exists a subsequence L' of L such that $d(L') < 1/n$. Put $P = L' \cup \{ x \}$, then $d(P) < 1/n$, and hence L is frequently in $P \in P_n$.

(2) \implies (3): Let X have a σ-strong network $P = \bigcup \{ P_n : n \in \mathbb{N} \}$ consisting of cs^*-covers. For each $n \in \mathbb{N}$, put $P_n = \{ P_\beta : \beta \in \Lambda_n \}$, and Λ_n is endowed with discrete topology. Put

$$M = \{ b = (\beta_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{ P_{\beta_n} \} \text{ is a network at some } x_b \text{ in } X \}.$$

Claim 1. M is a metric space:

In fact, Λ_n, as a discrete space, is a metric space for each $n \in \mathbb{N}$. So M, which is a subspace of the Tychonoff-product space $\prod_{n \in \mathbb{N}} \Lambda_n$, is a metric space.

The metric d on M can be described as follows. Let $b = (\beta_n), c = (\gamma_n) \in M$. If $b = c$, then $d(b, c) = 0$. If $b \neq c$, then $d(b, c) = 1/\min \{ n \in \mathbb{N} : \beta_n \neq \gamma_n \}$.

Claim 2. Let $b = (\beta_n) \in M$. Then there exists unique $x_b \in X$ such that $\{ P_{\beta_n} \}$ is a network at x_b in X:

The existence comes from the construction of M, we only need to prove the uniqueness. Let $\{ P_{\beta_n} \}$ be a network at both x_b and x'_b in X, then $\{ x_b, x'_b \} \subset P_{\beta_n}$ for each $n \in \mathbb{N}$. If $x_b \neq x'_b$, then there exists an open neighborhood U
of x_b such that $x'_b \notin U$. Because $\{P_{\beta_n}\}$ is a network at x_b in X, there exists $n \in \mathbb{N}$ such that $x_b \in P_{\beta_n} \subset U$, thus $x'_b \notin P_{\beta_n}$, a contradiction. This proves the uniqueness.

We define $f : M \rightarrow X$ as follows: for each $b = (\beta_n) \in M$, put $f(b) = x_b$, where $\{P_{\beta_n}\}$ is a network at x_b in X. By Claim 2, f is definable.

Claim 3. f is onto:

Let $x \in X$. For each $n \in \mathbb{N}$, there exists $\beta_n \in \Lambda_n$ such that $P_{\beta_n} \in (\mathcal{P}_n)_x$ because \mathcal{P} is a cover of X. Since \mathcal{P} is a σ-strong network of X, $\{P_{\beta_n}\}$ is a network at x in X by Lemma 2. Put $b = (\beta_n)$, then $b \in M$ and $f(b) = x$. This proves that f is onto.

Claim 3. f is continuous:

Let $b = (\beta_n) \in M$ and let $f(b) = x$. If U is an open neighborhood of x, then there exists $k \in \mathbb{N}$ such that $x \in P_{\beta_k} \subset U$ because $\{P_{\beta_n}\}$ is a network at x in X. Put $V = ((\prod \{\Lambda_n : n < k\}) \times \{\beta_k\} \times (\prod \{\Lambda_n : n > k\})) \cap M$, then V is an open neighborhood of b. Let $c = (\gamma_n) \in V$, then $\{P_{\gamma_n}\}$ is a network at $f(c)$ in X, so $f(c) \in P_{\gamma_n}$ for each $n \in \mathbb{N}$. Note that $\gamma_k = \beta_k$, $f(c) \in P_{\gamma_k} = P_{\beta_k}$. This proves that $f(V) \subset P_{\beta_k}$, and hence $f(V) \subset U$. So f is continuous.

Claim 4. f is a π-mapping.

Let $x \in U$ with U open in X. Since \mathcal{P}_n is a σ-strong network of X, there exists $n \in \mathbb{N}$ such that $st(x, \mathcal{P}_n) \subset U$. It suffices to prove that $d(f^{-1}(x), M - f^{-1}(U)) \geq 1/2n > 0$. Let $b = (\beta_n) \in M$. If $d(f^{-1}(x), b) < 1/2n$, then there is $c = (\gamma_n) \in f^{-1}(x)$ such that $d(b, c) < 1/n$, so $\beta_k = \gamma_k$ if $k \leq n$. Notice that $x = f(c) \in P_{\gamma_n} \subset \mathcal{P}_n$ and $f(b) \in P_{\beta_n} = P_{\gamma_n}$, so $f(b) \in st(x, \mathcal{P}_n) \subset U$, thus $b \in f^{-1}(U)$. This proves that $d(f^{-1}(x), b) \geq 1/2n$ if $b \in M - f^{-1}(U)$, so $d(f^{-1}(x), M - f^{-1}(U)) \geq 1/2n > 0$.

Claim 5. f is a sequentially-quotient mapping.
Let S be a sequence in X converging to $x \in X$. By Lemma 3, there exists a subsequence $S' = \{x_k\}$ of S such that for each $n \in \mathbb{N}$, S' is eventually in P_{β_n} for some $\beta_n \in \Lambda_n$. Note that $x \in P_{\beta_n}$ for each $n \in \mathbb{N}$. Put $b = (\beta_n)$, then $b \in M$ and $f(b) = x$ by Lemma 2. For each $k \in \mathbb{N}$, we pick $b_k \in f^{-1}(x_k)$ as follows. For each $n \in \mathbb{N}$, if $x_k \in P_{\beta_n}$, put $\beta_{k_n} = \beta_n$; if $x_k \notin P_{\beta_n}$, pick $\beta_{k_n} \in \Lambda_n$ such that $x_k \in P_{\beta_{k_n}}$. Put $b_k = (\beta_{k_n}) \in \prod_{n \in \mathbb{N}} \Lambda_n$, then $b_k \in M$ and $f(b_k) = x_k$ by Lemma 2. Put $L = \{b_k\}$, then L is a sequence in M and $f(L) = S'$. It suffices to prove that L converges to b. Let $b \in U$, where U is an element of base of M. By the definition of Tychonoff-product spaces, we may assume $U = ((\prod \{\beta_n : n \leq m\}) \times (\prod \{\Lambda_n : n > m\})) \cap M$, where $m \in \mathbb{N}$. For each $n \leq m$, S' is eventually in P_{β_n}, so there is $k(n) \in N$ such that $x_k \in P_{\beta_n}$ for all $k > k(n)$, thus $\beta_{k_n} = \beta_n$. Put $k_0 = \max\{k(1), k(2), \ldots, k(m), m\}$, then $b_k \in U$ for all $k > k_0$, so L converges to b.

By the above Claims, X is a sequentially-quotient, π-image of a metric space.

(3) \implies (1): Let f be a sequentially-quotient, π-mapping from a metric space (M, d) onto X. Put $d'(x, y) = d(f^{-1}(x), f^{-1}(y))$ for each $x, y \in X$. It is clear that d' is a d-function on X. For $b \in M$, $x \in X$ and $n \in \mathbb{N}$, put $S_n(b) = \{c \in M : d(b, c) < 1/n\}$ and $S_n'(x) = \{y \in X : d'(x, y) < 1/n\}$.

Claim 1. $\{S_n'(x) : n \in \mathbb{N}\}$ is a network at x in X for each $x \in X$:

Let U be an open neighborhood of x in X. Since f is a π-mapping, there exists $n \in \mathbb{N}$ such that $d(f^{-1}(x), M - f^{-1}(U)) \geq 1/n$. If $y \notin U$, then $f^{-1}(y) \subset M - f^{-1}(U)$, hence $d'(x, y) = d(f^{-1}(x), f^{-1}(y)) \geq d(f^{-1}(x), M - f^{-1}(U)) \geq 1/n$, so $y \notin S_n'(x)$. This proves that $S_n'(x) \subset U$.

Claim 2. Let $x \in X$ and $n \in \mathbb{N}$. Then $S_n'(x)$ is a sequential neighborhood of x:
Let \(\{x_m\} \) be a sequence converging to \(x \). By Remark 1, it suffices to prove that \(\{x_m\} \) is frequently in \(S'_n(x) \). Since \(f \) is sequentially-quotient, there exists a sequence \(\{b_k\} \) converging to \(b \in f^{-1}(x) \) such that each \(f(b_k) = x_{m_k} \). Pick \(k_0 \in \mathbb{N} \) such that \(d(b, b_k) < 1/n \) for all \(k \geq k_0 \). So \(d'(x, x_{m_k}) = d(f^{-1}(x), f^{-1}(x_{m_k})) \leq d(b, b_k) < 1/n \) for all \(k \geq k_0 \), and hence \(x_{m_k} \in S'_n(x) \) for all \(k \geq k_0 \). Thus \(\{x_{m_k}\} \) is eventually in \(S'_n(x) \), that is, \(\{x_m\} \) is frequently in \(S'_n(x) \).

Claim 3. \((X, d')\) satisfies weak Cauchy condition:

Let \(\{x_n\} \) be a convergent sequence in \(X \). Since \(f \) is sequentially-quotient, there exists a convergent sequence \(L = \{b_k\} \) in \(M \) such that \(f(b_k) = x_{n_k} \) for each \(k \in \mathbb{N} \). It suffices to prove that \(x_{n_k} \) is a \(d \)-Cauchy subsequence. Let \(\varepsilon > 0 \). Note that each convergent sequence in metric space \((M, d)\) is a \(d \)-Cauchy sequence. So there exists \(k_0 \in \mathbb{N} \) such that \(d(b_i, b_j) < \varepsilon \) for all \(i, j > k_0 \). Thus \(d'(x_{n_i}, x_{n_j}) = d(f^{-1}(x_{n_i}), f^{-1}(x_{n_j})) \leq d(b_i, b_j) < \varepsilon \) for all \(i, j > k_0 \). This proves that \(x_{n_k} \) is a \(d \)-Cauchy subsequence.

By the above Claims, \(d' \) is an \(sn \)-symmetric on \(X \) and \((X, d')\) satisfies weak Cauchy condition. So \(X \) is a weak Cauchy \(sn \)-symmetric space.

Remark 4 “\(\sigma \)-strong network” in Theorem 1 can be replaced by “point-star network”, where the concept of “point-star networks” is obtained by omitting “\(\mathcal{P}_{n+1} \) refines \(\mathcal{P}_n \) for each \(n \in \mathbb{N} \)” in the Definition 7 [13].

The author would like to thank Professor Z. Yun for his valuable amendments and suggestions.

Acknowledgement. This project was supported by NSFC(No.10971185 and 10971186).
References

Characterizations of weak Cauchy sn-symmetric spaces

Xun Ge
Jiangsu University of Science and Technology
College of Zhangjiagang
Zhangjiagang 215600, P. R. China
e-mail: zhugexun@163.com

Jinjin Li
Zhangzhou Teachers College
Department of Mathematics
Zhangzhou 363000, P. R. China
e-mail: jinjinli@fjzs.edu.cn