A note on the Bernstein’s cubature formula \(^1\)

Dan Bărbosu, Ovidiu T. Pop

Abstract

The Bernstein’s cubature formula is revisited and the evaluation of it’s remainder term is corrected.

2000 Mathematics Subject Classification: 65D32, 41A10, 41A63

Key words and phrases: Bernstein’s operator, Bernstein’s bivariate operator, Bernstein’s cubature formula, remainder term

1 Preliminaries

Let us to denote \(\mathbb{N} = \{1, 2, \ldots \} \) and \(\mathbb{N}_0 = \mathbb{N} \cup \{0\}\). The Bernstein’s bivariate operator \(B_{m,n} : C([0, 1] \times [0, 1]) \to C([0, 1] \times [0, 1])\) is defined for any \(f \in C([0, 1] \times [0, 1])\), any \((x, y) \in [0, 1] \times [0, 1]\) and any \(m, n \in \mathbb{N}\) by:

\[
(B_{m,n} f)(x, y) = \sum_{k=0}^{m} \sum_{j=0}^{n} p_{m,k}(x)p_{n,j}(y) f \left(\frac{k}{m}, \frac{j}{n} \right),
\]

\(^1\)Received 23 November, 2008
Accepted for publication (in revised form) 26 December, 2008
where

\[p_{m,k}(x) = \binom{m}{k} x^k (1 - x)^{m-k} \]

and

\[p_{n,j}(y) = \binom{n}{j} y^j (1 - y)^{n-j} \]

are the fundamental Bernstein’s polynomials.

Many approximation properties of the operator (1) are well known [1].

Let \(f \in C([0,1] \times [0,1]) \) be given. The following

\[f = B_{m,n}f + R_{m,n}f \]

is known as the "Bernstein bivariate approximation formula", \(R_{m,n}f \) denoting the remainder term.

In [14], pp. 325, is mentioned the following:

"If \(f \in C^{(2,2)}([0,1] \times [0,1]) \) the remainder term of (4) can be expressed under the form

\[(R_{m,n}f)(x, y) = -\frac{x(1-x)}{2m} f^{(2,0)}(x, \eta) - \frac{y(1-y)}{2n} f^{(0,2)}(\xi, y) \]
\[+ \frac{xy(1-x)(1-y)}{4mn} f^{(2,2)}(\xi, \eta)." \]

Next, using (4) with the expression of remainder term from (5), the Bernstein’s cubature formula is constructed.

In our recent paper [4], was obtained the correct form for the remainder term of (4) when the approximated function \(f \) belong to \(C([0,1] \times [0,1]) \) and an upper bound estimation for \(R_{m,n}f \) for the case when \(f \) is "sufficiently" differentiable on \([0,1] \times [0,1]\).
Let X be a linear space, $L_1, L_2 : X \to X$ be projectors, $I : X \to X$ be the identity operator and $R_1, R_2 : X \to X$ be the remainder operators associated to L_1 and respectively L_2. If L_1 and L_2 commute on X, the following decomposition of the identity operator

\begin{equation}
I = L_1 L_2 + R_1 \oplus R_2
\end{equation}

with

\begin{equation}
R_1 \oplus R_2 = R_1 + R_2 - R_1 R_2
\end{equation}

is well known [6], [7].

Suppose now that $X := C([0, 1] \times [0, 1])$, $L_1 := B^x_m$, $L_2 := B^y_n$, where B^x_m, B^y_n denote the parametrical extensions [1] of the Bernstein’s univariate operator, i.e.

\begin{equation}
(B^x_m f) (x, y) = \sum_{k=0}^{m} \sum_{j=0}^{n} p_{m,k}(x) p_{n,j}(y) f \left(\frac{k}{m}, y \right),
\end{equation}

\begin{equation}
(B^y_n f) (x, y) = \sum_{k=0}^{m} \sum_{j=0}^{n} p_{m,k}(x) p_{n,j}(y) f \left(x, \frac{j}{n} \right).
\end{equation}

It is well known [1] that (8) and (9) are not projectors. Is also well known [1] that for $f \in C^{2,2}([0, 1] \times [0, 1])$ the remainder operators associated to (8) and (9) are defined respectively by

\begin{equation}
(R^x_{m,n} f) (x, y) = -\frac{x(1-x)}{2m} f^{(2,0)}(x, \eta)
\end{equation}

\begin{equation}
(R^y_{m,n} f) (x, y) = -\frac{y(1-y)}{2n} f^{(0,2)}(\xi, y)
\end{equation}
for any \((x, y) \in [0, 1] \times [0, 1]\) and any \(m, n \in \mathbb{N}\), where \((\xi, \eta) \in]0,1]\times]0,1].\)

It is immediately that the operator (1) is the ”tensorial product” [6], [7] of operators (10) and (11), i.e

\[
B_{m,n} = B^{x}_{m}B^{y}_{n}.
\]

Computing the boolean sum of operators (10) and (11) one arrives to the expression (5) which is false, because \(B^{x}_{m}, B^{y}_{n}\) are not projectors and the decomposition formula (6) doesn’t holds.

By the above motives, we corrected (5) as follows.

\textbf{Theorem 1} \cite{2} For any \(f \in C([0, 1] \times [0, 1])\) and any \((x, y) \in [0, 1] \times [0, 1]\) the remainder term of (4) can be expressed under the form:

\[
(R_{m,n}f)(x, y) = -\frac{x(1-x)}{m} \sum_{k=0}^{m-1} \sum_{j=0}^{n} p_{m-1,k}(x)p_{n,j}(y) \left[x, \frac{k}{m}, \frac{k+1}{m} : f \right] \\
- \frac{y(1-y)}{n} \sum_{k=0}^{m} \sum_{j=0}^{n-1} p_{m,k}(x)p_{n-1,j}(y) \left[y, \frac{j}{n}, \frac{j+1}{n} : f \right] \\
+ \frac{xy(1-x)(1-y)}{mn} \sum_{k=0}^{m-1} \sum_{j=0}^{n-1} p_{m-1,k}(x)p_{n-1,j}(y) \left[x, \frac{k}{m}, \frac{k+1}{m}, y, \frac{j}{n}, \frac{j+1}{n} : f \right].
\]

Note that in (13) the brackets denote bivariate divided differences [2], [4].

In the Section 2, we use the following mean-value theorem for divided differences (see [8]).

\textbf{Theorem 2} Let \(m \in \mathbb{N}, a \leq x_{0} < x_{1} < \cdots < x_{m} \leq b\) distinct knots and \(f : [a, b] \rightarrow \mathbb{R}\) be a given function. If \(f\) is continuous on \([a, b]\) and has a \(m^{th}\)
derivatives on \((a, b)\), then there exists \(\xi \in (a, b)\) such that

\[
(x_0, x_1, \ldots, x_m; f) = \frac{1}{m!} f^{(m)}(\xi).
\]

2 Main results

Theorem 3 Let \(p, q \in \mathbb{N}_0\), \(p + q \geq 1\), \(x_0, x_1, \ldots, x_p \in [a, b]\) and \(y_0, y_1, \ldots, y_q \in [c, d]\) be a distinct knots and \(f : [a, b] \times [c, d] \to \mathbb{R}\) be a function. If \(f(\cdot, y) \in C([a, b])\) for any \(y \in [c, d]\), \(\frac{\partial^p f}{\partial x^p}(\cdot, y)\) exists on \(]a, b[\) for any \(y \in [c, d]\), \(\frac{\partial^p f}{\partial x^p}(x, \ast) \in C([c, d])\) for any \(x \in]a, b[\) and \(\frac{\partial^{p+q}}{\partial x^p \partial y^q}(x, \ast)\) exists on \(]c, d[\) for any \(x \in]a, b[\), then there exists \((\xi, \eta) \in]a, b[\times]c, d[\) such that

\[
(x_0, x_1, \ldots, x_p; y_0, y_1, \ldots, y_q; f) = \frac{1}{p!} \partial^p f \left(\xi, \ast\right)\bigg|_y
\]

so the equality (15) holds.

Proof. Applying the method of parametric extension (see [3]) and the mean-value theorem for one dimensional divided differences, there exist \(\xi \in]a, b[\) and respectively \(\eta \in]c, d[\), such that

\[
\left[x_0, x_1, \ldots, x_p; y_0, y_1, \ldots, y_q; f \right] = \frac{1}{p!} \left[y_0, y_1, \ldots, y_q; \frac{\partial^p f}{\partial x^p}(\xi, \ast) \right]_y
\]

so the equality (15) holds.
Remark 1 In the conditions of Theorem 3, if $p = 0$ then $q \in \mathbb{N}$, and we consider that f has the properties that $f(x_0, \ast) \in C([c, d])$ and $\frac{\partial^q f}{\partial y^q}(x_0, \ast)$ exists on $]c, d[. If $q = 0$, then we consider similarly above conditions about function f.

Theorem 4 Let $p, q \in \mathbb{N}_0$, $p + q \geq 1$, $x_0, x_1, \ldots, x_p \in [a, b]$ and $y_0, y_1, \ldots, y_q \in [c, d]$ be a distinct knots. If $f : [a, b] \times [c, d] \rightarrow \mathbb{R}$ is a function with the property that $f \in C^{(p, q)}([a, b] \times [c, d])$, then exists $(\xi, \eta) \in]a, b[\times]c, d[\) such that

$$\left[x_0, x_1, \ldots, x_p \ y_0, y_1, \ldots, y_q ; f \right] = \frac{1}{p!q!} \frac{\partial^{p+q} f}{\partial x^p \partial y^q} (\xi, \eta).$$

Proof. It results from Theorem 3.

Theorem 5 Let $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ be a function.

If $f(\cdot, y) \in C^1([0, 1])$ for any $y \in [0, 1]$, exists $\frac{\partial^2 f}{\partial x^2}(\cdot, y)$ on $]0, 1[$ for any $y \in [0, 1]$, $\frac{\partial^2 f}{\partial x^2}(x, \ast) \in C^1([0, 1])$ for any $x \in]0, 1[\), exists $\frac{\partial^4 f}{\partial x^2 \partial y^2}(x, \ast)$ on $]0, 1[\)$ for any $x \in]0, 1[\$, then for any $(x, y) \in [0, 1] \times [0, 1]$, any $m, n \in \mathbb{N}$, there exist $(\xi_i(k, j), \eta_i(k, j)) \in [0, 1] \times [0, 1]$, $i \in \{1, 2, 3\}$, such that

$$\left(R_{m,n}f \right)(x, y) = \frac{x(1 - x)}{2m} \sum_{k=0}^{m-1} \sum_{j=0}^{n} \frac{\partial^2 f}{\partial x^2} (\xi_1(k, j), \eta_1(k, j)) +$$

$$\frac{y(1 - y)}{2n} \sum_{k=0}^{m-1} \sum_{j=0}^{n-1} \frac{\partial^2 f}{\partial y^2} (\xi_2(k, j), \eta_2(k, j)) +$$

$$\frac{xy(1 - x)(1 - y)}{4mn} \sum_{k=0}^{m-1} \sum_{j=0}^{n-1} \frac{\partial^4 f}{\partial x^2 \partial y^2} (\xi_3(k, j), \eta_3(k, j)).$$
If $\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^4 f}{\partial x^2 \partial y^2}$ are bounded on $]0,1[\times]0,1[$, the following inequalities

$$|(R_{m,n}f)(x, y)| \leq \frac{x(1-x)}{2m} M_1(f) + \frac{y(1-y)}{2n} M_2(f) + \frac{xy(1-x)(1-y)}{4mn} M_3(f)$$

and

$$|(R_{m,n}f)(x, y)| \leq \left(\frac{1}{8m} + \frac{1}{8n} + \frac{1}{64mn}\right) M(f)$$

hold, for any $(x, y) \in [0,1] \times [0,1]$ and any $m, n \in \mathbb{N}$, where

$$M_1(f) = \sup_{(x,y) \in [0,1] \times [0,1]} \left| \frac{\partial^2 f}{\partial x^2}(x, y) \right|,$$

$$M_2(f) = \sup_{(x,y) \in [0,1] \times [0,1]} \left| \frac{\partial^2 f}{\partial y^2}(x, y) \right|,$$

$$M_3(f) = \sup_{(x,y) \in [0,1] \times [0,1]} \left| \frac{\partial^4 f}{\partial x^2 \partial y^2}(x, y) \right|,$$

and

$$M(f) = \max\{M_1(f), M_2(f), M_3(f)\}.$$

Proof. In the relation (13) we apply Theorem 3 and the relation (17) results. Because $x(1-x) \leq \frac{1}{4}, y(1-y) \leq \frac{1}{4},$

$$\sum_{k=0}^{m-1} \sum_{j=0}^{n} p_{m-1,k}(x)p_{n,j}(y) = \sum_{k=0}^{m-1} \sum_{j=0}^{n-1} p_{m,k}(x)p_{n-1,j}(y)$$

$$= \sum_{k=0}^{m-1} \sum_{j=0}^{n-1} p_{m-1,k}(x)p_{n-1,j}(y) = 1$$
and transforming into modulus in the relation above and taking into account
that the partial derivatives of \(f \) are bounded on \([0,1]\times[0,1]\), the inequalities
from (18) are obtained.

Integrating the Bernstein’s bivariate approximation formula (4) one ar-
vives to the following Bernstein’s cubature formula

\[
\int_{0}^{1} \int_{0}^{1} f(x,y) \, dx \, dy = \sum_{i=0}^{m} \sum_{j=0}^{n} A_{i,j} \left(\frac{i}{m}, \frac{j}{n} \right) + R_{m,n}[f].
\]

Theorem 6 [14] The coefficients of the cubature formula (24) are given by the equalities:

\[
A_{ij} = \frac{1}{(m+1)(n+1)}, \quad i = 0, m, \quad j = 0, n.
\]

Regarding the remainder term of (23), we have the following:

Theorem 7 In the conditions of Theorem 5, the following upper-bound es-
timation for the remainder term of Bernstein’s cubature formula (24) is

\[
|R_{m,n}[f]| \leq \frac{1}{12m} M_1(f) + \frac{1}{12n} M_2(f) + \frac{1}{144mn} M_3(f),
\]

where \(M_1(f) \), \(M_2(f) \) and \(M_3(f) \) were defined at (20), (21) and (22).

Proof. The inequality (26) follows by integrating the Bernstein’s bivariate
approximation formula (4) and taking the first inequality (18) into account.

Theorem 8 Let \(f : [0,1] \times [0,1] \rightarrow \mathbb{R} \) be a function. If \(f \in C^{(2,2)}([0,1] \times [0,1]) \), the relations (17) and (26) hold, where

\[
M_1(f) = \sup_{(x,y) \in [0,1] \times [0,1]} \left| \frac{\partial^2 f}{\partial x^2} (x,y) \right|,
\]
A note on the Bernstein’s cubature formula

\[M_2(f) = \sup_{(x,y) \in [0,1] \times [0,1]} \left| \frac{\partial^2 f}{\partial y^2}(x,y) \right|, \quad \text{and} \]

\[M_3(f) = \sup_{(x,y) \in [0,1] \times [0,1]} \left| \frac{\partial^4 f}{\partial x^2 \partial y^2}(x,y) \right|. \]

Proof. It results from Theorem 7

Remark 2 In Theorem 7 we give a new proof for the known inequality (26) (see [14], pp.325). The inequality from (26) is demonstrate in [14] in the conditions of Theorem 8.

Theorem 9 In the conditions of Theorem 7 or Theorem 8, it follows that

\[\lim_{m,n \to \infty} \sum_{i=0}^{m} \sum_{j=0}^{n} \frac{1}{(m+1)(n+1)} f \left(\frac{i}{m}, \frac{j}{n} \right) = \int_0^1 \int_0^1 f(x,y) dx dy \]

and the convergence from (27) is uniform.

Proof. It results from inequality (26).

Remark 3 Because the Bernstein’s bivariate operator \(B_{m,n} \) conserve only the lineares functions in \(x \) and respectively \(y \), it follows that the degree of exactness for the cubature formula (24) is \((1,1)\). In the case when the approximated function \(f \) satisfies the hypotheses of Theorem 6, the above affirmation follows directly from the mentioned theorem.

Acknowledgement. This paper is devoted to the memory of Luciana Lupaş and Alexandru Lupaş, remarkable representatives of the Romanian school of Approximation Theory and Numerical Analysis.
References

[3] Bărbosu, D., Two dimensional divided differences revisited, Creative Math.& Inf., 17 (2008), 1-7

[8] Ivan, M., Elements of Interpolation Theory, Mediamira Science Publisher, Cluj-Napoca (2004), 61-68
A note on the Bernstein’s cubature formula

Dan Bărbosu
North University of Baia Mare
Department of Mathematics and Computer Science
Victoriei 76, 430122 Baia Mare Romania,
e-mail: barbosudan@yahoo.com
Ovidiu T. Pop
National College ”Mihai Eminescu”
5 Mihai Eminescu Street
440014 Satu Mare Romania,
e-mail: ovidiutiberiu@yahoo.com