Relation between Greek means and various means \(^1\)

V.Lokesha, Padmanabhan.S, K.M.Nagaraja, Y. Simsek

Abstract

In this paper, we obtain some inequalities between Greek means and various means. Further, we deduced the best possible values of various means with \(G_{n_{\mu, r}}(a, b)\) and \(g_{n_{\mu, r}}(a, b)\). Also we studied the partial derivatives of important means and the value of \(\alpha\) of second order partial derivatives.

2000 Mathematics Subject Classification: 26D15, 26D10.

Key words and phrases: Greek means, Oscillatory mean and Logarithmic mean.

\(^1\)Received 12 March, 2008

Accepted for publication (in revised form) 3 March, 2009
1 Introduction

In ([1]), Ten Greek means are defined on the basis of proportions of which six means are named and four means are unnamed and some distinguished results are obtained. In ([5], [6]) authors defined Oscillatory, r^{th} Oscillatory means and its duals and obtained some new inequalities and the best possible values with Logarithmic mean, Identric mean and Power mean. In ([7]) authors defined $Gn_{\mu,r}(a, b)$, $gn_{\mu,r}(a, b)$ deduced some important results and also shown applications to Ky-Fan inequalities. Here we find the best possible values of the parameters μ, r for which F_4, F_5 and F_6 are satisfied by the inequalities (15) to (22). Further in ([1]), the partial derivatives of means and some related results are given, using which we obtained parameter α for various means.

Let $a, b > 0$, then

(1) $A(a, b) = F_1(a, b) = \frac{a + b}{2}$

(2) $G(a, b) = F_2(a, b) = \sqrt{ab}$

(3) $F_3(a, b) = \frac{2ab}{a + b}$

(4) $C(a, b) = F_4(a, b) = \frac{a^2 + b^2}{a + b}$

(5) $F_5(a, b) = \frac{a - b + \sqrt{(a - b)^2 + 4b^2}}{2}$

(6) $F_6(a, b) = \frac{b - a + \sqrt{(a - b)^2 + 4a^2}}{2}$
are respectively called Arithmetic mean, Geometric mean, Harmonic mean, contra Harmonic mean, first contra Geometric mean, second contra Geometric mean. Above are called named six Greek means.

\[(7) \quad L(a, b) = \begin{cases} \frac{a - b}{\ln a - \ln b} & a \neq b \\ \frac{a}{b} & a = b \end{cases}\]

\[(8) \quad I(a, b) = \begin{cases} e^{\left(\frac{a \ln a - b \ln b}{a - b}\right) - 1} & a \neq b \\ \frac{a}{b} & a = b \end{cases}\]

\[(9) \quad M_r(a, b) = \begin{cases} \left(\frac{a^r + b^r}{2}\right)^{\frac{1}{r}} & r \neq 0 \\ \sqrt{ab} & r = 0 \end{cases}\]

\[(10) \quad H(a, b) = \frac{a + \sqrt{ab} + b}{3}\]

are respectively called Logarithmic mean, Identric mean and Power mean and Heron mean.

Definition 1 ([7]) For positive numbers \(a\) and \(b\), \(r\) be a positive real number and \(\mu \in (-2, \infty)\). Then \(G_{n+r}(a, b)\) and \(g_{n+r}(a, b)\) are defined as

\[(11) \quad G_{n+r}(a, b) = \begin{cases} \frac{2}{\mu+2} A(a, b) + \frac{\mu}{\mu+2} M_r(a, b) & r \neq 0 \\ \frac{2}{\mu+2} A(a, b) + \frac{\mu}{\mu+2} G(a, b) & r = 0 \end{cases}\]

and

\[(12) \quad g_{n+r}(a, b) = \begin{cases} M_{\frac{\mu}{\mu+2}}(a, b) A_{\frac{\mu}{\mu+2}}(a, b) & r \neq 0 \\ G_{\frac{\mu}{\mu+2}}(a, b) A_{\frac{\mu}{\mu+2}}(a, b) & r = 0 \end{cases}\].
\textbf{Definition 2} ([6]) Let $\alpha \in [0,1]$ and $r \geq 0$, then r^{th} Oscillatory mean and its dual are defined by
\begin{equation}
O = O(a, b; \alpha, r) = \alpha M_r(a, b) + (1 - \alpha) A(a, b)
\end{equation}
and
\begin{equation}
o = o(a, b; \alpha, r) = M_r^\alpha(a, b)A^{1-\alpha}(a, b).
\end{equation}

Let us conclude the introduction by a brief description of the contents of the paper. Section 2 contains new inequalities involving Greek means and other means and its proof are given. Also, we present table 1 contain the best possible value of important means with $Gn_{\mu,r}(a, b)$ and $gn_{\mu,r}(a, b)$, power mean, Oscillatory mean and r^{th} Oscillatory mean. Finally, Section 3 contains partial derivatives and consequences of symmetric mean, α values for important means are tabulated in Table 2 and two remarks.

\section{Some Inequalities}

\textbf{Theorem 1} For $\mu_1, \mu_2 \neq -2, r \neq 0, 3$ and if $\mu_1 \leq \frac{4}{r-3} \leq \mu_2$, then
\begin{equation}
(i) \quad gn_{\mu_2,r}(a, b) \leq F_4(a, b) \leq Gn_{\mu_1,r}(a, b).
\end{equation}
Furthermore $\mu_1 = \mu_2 = -\frac{4}{r-3}$ is the best possible for (15).
\begin{equation}
(ii) \quad gn_{\mu_2,0}(a, b) \leq F_4(a, b) \leq Gn_{\mu_1,0}(a, b).
\end{equation}
Furthermore $\mu_1 = \mu_2 = -\frac{4}{3}$ is the best possible for (16).
Proof. Applying Taylor’s theorem and by setting \(a = x = t + 1 \) and \(b = 1 \), we have
\[
F_4(x, 1) = F_4(t + 1, 1) = 1 + \frac{t}{2} + \frac{t^2}{4} - \frac{t^3}{8} - ... \\
Gn_{\mu_1,r}(x, 1) = Gn_{\mu_1,r}(t + 1, 1) = 1 + \frac{t}{2} - \frac{(1 - r)\mu_1 t^2}{(\mu_1 + 2)} + ... \\
gn_{\mu_2,r}(x, 1) = gn_{\mu_2,r}(t + 1, 1) = 1 + \frac{t}{2} - \frac{(1 - r)\mu_2 t^2}{(\mu_2 + 2)} + ...
\]
Consider \(gn_{\mu_2,r}(a, b) \leq F_4(a, b) \leq Gn_{\mu_1,r}(a, b) - \frac{(1 - r)\mu_2}{(\mu_2 + 2)} \leq \frac{1}{4} \leq \frac{(1 - r)\mu_1}{(\mu_1 + 2)} \)
with simple manipulation we have \(\mu_1 \leq \frac{4}{r} \leq \mu_2 \). Hence the proof of (15) and (16).

Theorem 2 For \(\mu_1, \mu_2 \neq -2, r \neq 0, 2 \) and if \(\mu_1 \leq \frac{2}{r - 2} \leq \mu_2 \), then
\[
(i) \quad gn_{\mu_2,r}(a, b) \leq F_5(a, b) \leq Gn_{\mu_1,r}(a, b). \\

Furthermore \(\mu_1 = \mu_2 = \frac{2}{r - 2} \) is the best possible for (17)
\[
(ii) \quad gn_{\mu_2,0}(a, b) \leq F_5(a, b) \leq Gn_{\mu_1,0}(a, b). \\

Furthermore \(\mu_1 = \mu_2 = -1 \) is the best possible for (18).

Corollary 1 For \(\mu_1, \mu_2 \neq -2, r \neq 0, 2 \) and if \(\mu_1 \leq \frac{2}{r - 2} \leq \mu_2 \), then
\[
(i) \quad gn_{\mu_2,r}(a, b) \leq F_6(a, b) = F_5(a, b) \leq Gn_{\mu_1,r}(a, b). \\

Furthermore \(\mu_1 = \mu_2 = \frac{2}{r - 2} \) is the best possible for (19).
\[
(ii) \quad gn_{\mu_2,0}(a, b) \leq F_6(a, b) = F_5(a, b) \leq Gn_{\mu_1,0}(a, b). \\

Furthermore \(\mu_1 = \mu_2 = -1 \) is the best possible for (20).
Theorem 3 Let $\alpha_1, \alpha_2 \in [0, 1]$, $r \neq 0, 1$, if $\alpha_1 \leq \frac{2}{r-1} \leq \alpha_2$, then

\begin{equation}
O(a,b; \alpha_1, r) \geq F_4(a,b) \geq o(a,b; \alpha_2, r).
\end{equation}

Furthermore $\alpha_1 = \alpha_2 = \frac{2}{r-1}$ is the best possible for (21).

Proof. Applying Taylor’s theorem and by setting $a = x = t + 1$ and $b = 1$, we have

\[F_4(x, 1) = F_4(t + 1, 1) = 1 + \frac{t}{2} + \frac{t^2}{4} + \frac{t^3}{8} - ... \]

\[O(a,b; \alpha, r) = 1 + \frac{t}{2} - \frac{\alpha (1-r)}{8} t^2 + ... \]

\[o(a,b; \alpha, r) = 1 + \frac{t}{2} - \frac{\alpha (1-r)}{8} t^2 + \]

Consider $\alpha_1 \leq \frac{2}{r-1} \leq \alpha_2$. With simple manipulations we get

\[-\frac{\alpha_1 (1-r)}{8} \geq \frac{1}{4} \geq -\frac{\alpha_2 (1-r)}{8} \]

\[1 + \frac{t}{2} - \frac{\alpha_1 (1-r)}{8} t^2 + ... \geq 1 + \frac{t}{2} + \frac{1}{4} t^2 + ... \geq 1 + \frac{t}{2} - \frac{\alpha_2 (1-r)}{8} t^2 + ... \]

\[O(a,b; \alpha_1, r) \geq F_4(a,b) \geq o(a,b; \alpha_2, r). \]

Furthermore $\alpha_1 = \alpha_2 = \frac{2}{r-1}$ is the best possible (for 21).

Theorem 4 Let $\alpha_1, \alpha_2 \in [0, 1]$, $r \neq 0, 1$, if $\alpha_1 \leq \frac{1}{r-1} \leq \alpha_2$, then

\begin{equation}
O(a,b; \alpha_1, r) \geq F_5(a,b) \geq o(a,b; \alpha_2, r).
\end{equation}

Furthermore $\alpha_1 = \alpha_2 = \frac{1}{r-1}$ is the best possible for (22).

Corollary 2 Let $\alpha_1, \alpha_2 \in [0, 1]$, $r \neq 0, 1$, if $\alpha_1 \leq \frac{1}{r-1} \leq \alpha_2$, then

\begin{equation}
O(a,b; \alpha_1, r) \geq F_5(a,b) = F_6(a,b) \geq o(a,b; \alpha_2, r).
\end{equation}

Furthermore $\alpha_1 = \alpha_2 = \frac{1}{r-1}$ is the best possible for (23).
The proofs of the following remarks are obvious.

Remark 1

\[F_3 \leq F_2 \leq L \leq M_{1/3} \leq M_{1/2} \leq H \leq M_{2/3} \leq F_1 \leq F_6 \leq F_5 \leq F_4. \]

Remark 2

\[F_3 \leq F_2 \leq L \leq I \leq F_1 \leq F_6 \leq F_5 \leq F_4. \]

The following table gives the best possible value of important means with \(G_{\mu,r}(a, b) \) and \(gn_{\mu_2,r}(a, b) \) power mean, oscillatory mean and \(r \)th oscillatory mean.

<table>
<thead>
<tr>
<th>Important means</th>
<th>(G_{\mu,0}(a, b))</th>
<th>(G_{\mu,r}(a, b))</th>
<th>(O(a, b; a, r))</th>
<th>(O(a, b, a))</th>
<th>(M_r(a, b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic mean</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>(\infty)</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{1}{1-r})</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Contra Harmonic mean</td>
<td>(-\frac{4}{3})</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{2}{1-r})</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>I Contra Geometric mean</td>
<td>(-1)</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{1}{1-r})</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>II Contra Geometric mean</td>
<td>(-1)</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{1}{1-r})</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>Logarithmic mean</td>
<td>4</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{r}{3})</td>
<td>(\frac{r}{3})</td>
</tr>
<tr>
<td>Identric Mean</td>
<td>1</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{1}{1-r})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>Heron Mean</td>
<td>1</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{1}{1-r})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>Power Mean</td>
<td>(-1)</td>
<td>(\frac{2}{1-r})</td>
<td>(\frac{1}{1-r})</td>
<td>(1 - r)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

3 Partial Derivatives and Consequences

For a symmetric mean \(M(a, b) \) the partial derivatives are exist, then we have

\[M_a(c, c) + M_b(c, c) = 1 \]

(24)
(25) \[M_a(c,c) \geq 0 \text{ and } M_b(c,c) \geq 0 \]

(26) \[0 \leq M_a(c,c) \leq 1 \text{ and } 0 \leq M_b(c,c) \leq 1 \]

(26) property does not hold for arbitrary point.

(27) \[M_a(c,c) = M_b(c,c) = \frac{1}{2} \]

(28) \[M_{aa}(c,c) + 2M_{ab}(c,c) + M_{bb}(c,c) = 0 \]

(29) \[M_{aa}(c,c) = -M_{ab}(c,c) = M_{bb}(c,c) \]

(30) \[M_{aa}(c,c) = \frac{\alpha}{c} \text{ where } \alpha \in \mathbb{R}. \]

The proofs of the above results are obtained by simple direct computations.

Table 2

<table>
<thead>
<tr>
<th>Important means</th>
<th>Notation</th>
<th>The value of ‘(\alpha)’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic Mean</td>
<td>(F_1(a,b))</td>
<td>0</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>(F_2(a,b))</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Harmonic Mean</td>
<td>(F_3(a,b))</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Logarithmic Mean</td>
<td>(L(a,b))</td>
<td>(\frac{1}{e})</td>
</tr>
<tr>
<td>Heron Mean</td>
<td>(h(a,b))</td>
<td>(\frac{1}{\sqrt{2}})</td>
</tr>
<tr>
<td>Identric Mean</td>
<td>(I(a,b))</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Power Mean</td>
<td>(M_r(a,b))</td>
<td>(\frac{1}{r^2})</td>
</tr>
<tr>
<td>Contra Harmonic mean</td>
<td>(F_4(a,b))</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>First Contra Geometric mean</td>
<td>(F_5(a,b))</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>Second Contra Geometric mean</td>
<td>(F_6(a,b))</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>Oscillatory mean</td>
<td>(o(a,b;\alpha))</td>
<td>(\frac{\alpha}{\alpha + 2})</td>
</tr>
<tr>
<td>(r^{th}) Oscillatory mean</td>
<td>(o(a,b;\alpha))</td>
<td>(\frac{-\alpha(1-x)}{\alpha(1-x) + 2})</td>
</tr>
<tr>
<td>Definition 1.</td>
<td>(G_{n_\mu,r}(a,b)) and (g_{n_\mu,r}(a,b)) ((r = 0))</td>
<td>(\frac{-\mu(1-x)}{4(\mu + 2)})</td>
</tr>
<tr>
<td>Definition 1.</td>
<td>(G_{n_\mu,r}(a,b)) and (g_{n_\mu,r}(a,b)) ((r \neq 0))</td>
<td>(\frac{-\mu}{4\mu + 2})</td>
</tr>
</tbody>
</table>
Relation between Greek means and various means

Acknowledgement

We would like to thank Professor Zhi-Hua-Zhang, China for his suggestions for improvements on this paper and Mr. Premnath Reddy, Chairman, Acharya Institutes, for constant encouragement and support.

References

Relation between Greek means and various means

V.Lokesha
Department of Mathematics
Acharya Institute of Technology, Soldevanahalli,
Hesaraghatta Main Road, Bangalore-90, India
e-mail: lokiv@yahoo.com

Padmanabhan.S
Department of Mathematics
RNS, Institute of Technology, Bangalore, India
e-mail: padmanabhan_apsce@rediffmail.com

K.M.Nagaraja
Department of Mathematics
Sri Krishna Institute of Technology, chikkabanavara,
Hesaraghatta Main Road, Bangalore-90, India
e-mail: kmn_2406@yahoo.co.in

Yilmaz Simsek
University of Akdeniz
Faculty of Arts and Science, Department of Mathematics
07058 Antalya, Turkey
e-mail: ysimsek@akdeniz.edu.tr