A sufficient condition for univalence
Horiana Tudor

Abstract
In this paper we obtain sufficient conditions for univalence, which generalize some well known univalence criteria for analytic functions in the unit disk.

2000 Mathematics Subject Classification: 30C45

1 Introduction

We denote by $U_r = \{ z \in \mathbb{C} : |z| < r \}$ the disk of z-plane, where $r \in (0, 1]$, $U_1 = U$ and $I = [0, \infty)$. Let A be the class of functions f analytic in U such that $f(0) = 0$, $f'(0) = 1$.

Theorem 1.1. (see [2]) Let $f \in A$. If for all $z \in U$

\begin{equation}
|\{f; z\}| \leq \frac{2}{(1 - |z|^2)^2}
\end{equation}

where

\begin{equation}
\{f; z\} = \left(\frac{f''(z)}{f'(z)} \right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)} \right)^2
\end{equation}

then the function f is univalent in U.

\footnote{Received 1 April, 2008
Accepted for publication (in revised form) 5 June, 2008}
Theorem 1.2. (see [1]) Let $f \in A$. If for all $z \in U$

\begin{equation}
(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \leq 1,
\end{equation}

then the function f is univalent in U.

Theorem 1.3. (see [3]) Let $f \in A$. If for all $z \in U$

\begin{equation}
\left| \frac{z^2f'(z)}{f^2(z)} - 1 \right| < 1
\end{equation}

then the function f is univalent in U.

2 Preliminaries

Our considerations are based on the theory of Löwner chains; we first recall the basic result of this theory, from Pommerenke.

Theorem 2.1. (see [4]) Let $L(z, t) = a_1(t)z + a_2(t)z^2 + \ldots$, $a_1(t) \neq 0$ be analytic in U_r, for all $t \in I$, locally absolutely continuous in I and locally uniformly with respect to U_r. For almost all $t \in I$, suppose that

\[z \frac{\partial L(z, t)}{\partial z} = p(z, t) \frac{\partial L(z, t)}{\partial t}, \quad \text{for all } z \in U_r, \]

where $p(z, t)$ is analytic in U and satisfies the condition $\text{Re } p(z, t) > 0$, for all $z \in U$, $t \in I$. If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\{L(z, t)/a_1(t)\}$ forms a normal family in U_r, then for each $t \in I$, the function $L(z, t)$ has an analytic and univalent extension to the whole disk U.

3 Main results

Theorem 3.1. Let β be a real number, $\beta > 1/2$ and $f \in A$. If there exist the analytic functions g and h in U, $g(z) = 1+b_1z+\ldots$, $h(z) = c_0+c_1z+\ldots$, such that the inequalities

\begin{equation}
\left| \frac{f'(z)}{g(z)} - \beta \right| < \beta
\end{equation}
A sufficient condition for univalence

and

\begin{align}
(6) \quad \left| \left(\frac{f'(z)}{g(z)} - \beta \right) |z|^{2\beta} + (1 - |z|^{2\beta}) \left(\frac{2zf'(z)h(z)}{g(z)} + \frac{zg'(z)}{g(z)} + 1 - \beta \right) \\
+ \frac{(1 - |z|^{2\beta})^2}{|z|^{2\beta}} \left(\frac{z^2f'(z)h^2(z)}{g(z)} + \frac{z^2g'(z)h(z)}{g(z)} - z^2h'(z) \right) \right| \leq \beta
\end{align}

are true for all \(z \in U \), then the function \(f \) is univalent in \(U \).

Proof. The functions \(f, g, h \) being analytic in \(U \), it is easy to see that there is a real number \(r_1 \in (0, 1] \) such that the function

\begin{equation}
L(z, t) = f(e^{-t}z) + \frac{(e^{2\beta t} - 1) \cdot e^{-t}z \cdot g(e^{-t}z)}{1 + (e^{2\beta t} - 1) \cdot e^{-t}z \cdot h(e^{-t}z)}
\end{equation}

is analytic in \(U_{r_1} \), for all \(t \in I \). If \(L(z, t) = a_1(t)z + a_2(t)z^2 + \ldots \) is the power series expansion of \(L(z, t) \) in the neighborhood \(U_{r_1} \), it can be checked that we have \(a_1(t) = e^{(2\beta - 1)t} \) and therefore \(a_1(t) \neq 0 \) for all \(t \in I \). From \(\beta > 1/2 \), it follows that \(\lim_{t \to \infty} |a_1(t)| = \infty \).

Since \(L(z, t)/a_1(t) \) is the summation between \(z \) and an analytic function, we conclude that \(\{L(z, t)/a_1(t)\}_{t \in I} \) is a normal family in \(U_{r_2} \), \(0 < r_2 < r_1 \). By elementary computations, it can be shown that \(\frac{\partial L(z, t)}{\partial t} \) can be expressed as the summation between \((2\beta - 1)e^{(2\beta - 1)t}z \) and an analytic function in \(U_r \), \(0 < r < r_2 \), and hence we obtain the absolute continuity requirement of Theorem 2.1. Let \(p(z, t) \) be the analytic function defined in \(U_r \) by

\begin{equation}
p(z, t) = z \frac{\partial L(z, t)}{\partial z} \left/ \frac{\partial L(z, t)}{\partial t} \right.
\end{equation}

In order to prove that the function \(p(z, t) \) has an analytic extension, with positive real part in \(U \), for all \(t \in I \), it is sufficient to show that the function \(w(z, t) \) defined in \(U_r \) by

\begin{equation}
w(z, t) = \frac{p(z, t) - 1}{p(z, t) + 1}
\end{equation}
can be continued analytically in U and that $|w(z, t)| < 1$ for all $z \in U$ and $t \in I$.

By simple calculations, we obtain

$$w(z, t) = \frac{1}{\beta} \left(\frac{f'(e^{-t}z)}{g(e^{-t}z)} - \beta \right) e^{-2\beta t} +$$

$$\frac{1 - e^{-2\beta t}}{\beta} \left(\frac{2e^{-t}zf'(e^{-t}z)h(e^{-t}z)}{g(e^{-t}z)} + \frac{e^{-t}zg'(e^{-t}z)}{g(e^{-t}z)} + 1 - \beta \right) +$$

$$\frac{(1 - e^{-2\beta t})^2 e^{-2\beta t}}{\beta e^{-2\beta t}} \left(\frac{f'(e^{-t}z)h^2(e^{-t}z)}{g(e^{-t}z)} + \frac{g'(e^{-t}z)h(e^{-t}z)}{g(e^{-t}z)} - h'(e^{-t}z) \right).$$

From (5) and (6) we deduce that the function $w(z, t)$ is analytic in the unit disk U. From (5) and since $\beta > 1/2$ we have

$$|w(z, 0)| = \left| \frac{f'(z)}{g(z)} - \beta \right| < 1 \quad (9)$$

$$|w(0, t)| = \left| \frac{1 - \beta}{\beta} \right| < 1. \quad (10)$$

Let t be a fixed number, $t > 0$ and observing that $|e^{-t}z| \leq e^{-t} < 1$ for all $z \in \overline{U} = \{ z \in C : |z| \leq 1 \}$ we conclude that the function $w(z, t)$ is analytic in \overline{U}. Using the maximum modulus principle it follows that for each $t > 0$, arbitrary fixed, there exists $\theta = \theta(t) \in R$ such that

$$|w(z, t)| < \max_{|\xi|=1} |w(\xi, t)| = |w(e^{i\theta}, t)|, \quad (11)$$

We denote $u = e^{-t} \cdot e^{i\theta}$. Then $|u| = e^{-t} < 1$ and from (8) we get

$$|w(e^{i\theta}, t)| = \frac{1}{\beta} \left| \left(\frac{f'(u)}{g(u)} - \beta \right) u^{2\beta} + (1 - |u|^{2\beta}) \right.$$}

$$\left(\frac{2uf'(u)h(u)}{g(u)} + \frac{ug'(u)}{g(u)} + 1 - \beta \right)$$

$$+ \frac{(1 - |u|^{2\beta})^2 u^2}{|u|^{2\beta}} \left(\frac{f'(u)h^2(u)}{g(u)} + \frac{g'(u)h(u)}{g(u)} - h'(u) \right).$$
The inequality (6) implies $|w(e^{i\theta}, t)| \leq 1$ and by using (9), (10) and (11) it follows that $|w(z, t)| < 1$ for all $z \in U$ and $t \geq 0$. From Theorem 2.1 we obtain that the function $L(z, t)$ has an analytic and univalent extension to the whole unit disk U, for all $t \geq 0$. For $t = 0$ we have $L(z, 0) = f(z)$, $z \in U$ and therefore the function f is univalent in U.

Suitable choices of the functions g and h in Theorem 3.1 gives us various univalence criteria, between them being the very known Nehari’s criterion, Becker’s criterion and also Ozaki-Nunokawa’s criterion.

Corollary 1. Let β be a real number, $\beta > 1/2$ and $f \in A$. If for all $z \in U$

$$
|1 - |z|^{2\beta}|^2 - z^2 \{f; z\}^2 - 2 + \beta| \leq \beta
$$

(12)

where $\{f; z\}$ is defined by (2), then the function f is univalent in U.

Proof. It results from Theorem 3.1 with $g = f'$ and $h = \frac{1}{2} \frac{f''}{f'}$.

Remark 1. If we consider $\beta = 1$ in Corollary 1, the inequality (12) becomes (1) and then we obtain the univalence criterion due to Nehari [2].

Corollary 2. Let β be a real number, $\beta > 1/2$ and $f \in A$. If for all $z \in U$

$$
|1 - |z|^{2\beta}|^2 - \frac{z f''(z)}{f'(z)} + 1 - \beta| \leq \beta
$$

(13)

then the function f is univalent in U.

Proof. It results from Theorem 3.1 with $g = f'$ and $h = 0$.

Remark 2. If we consider $\beta = 1$ in Corollary 2, the inequality (13) becomes (3) and then we obtain the univalence criterion due to Becker [1].

Corollary 3. Let β be a real number, $\beta > 1/2$ and $f \in A$. If for all $z \in U$

$$
\left| \left(\frac{z^2 f'(z)}{f^2(z)} - 1 \right) - (\beta - 1) \right| < \beta
$$

(14)
(15) \[\left| \left(\frac{z^2 f'(z)}{f^2(z)} - 1 \right) - (\beta - 1)|z|^{2\beta} \right| < \beta |z|^{2\beta} \]

then the function \(f \) is univalent in \(U \).

Proof. It results from Theorem 3.1 with \(g(z) = \left(\frac{f(z)}{z} \right)^2 \) and \(h(z) = \frac{1}{z} - \frac{f(z)}{z^2} \).

Remark 3. If we consider \(\beta = 1 \) in Corollary 3, the inequalities (14) and (15) become (4) and then we obtain the univalence criterion due to Ozaki and Nunokawa [3].

References

Department of Mathematics
"Transilvania" University
2200 Brașov, Romania
E-mail: horianatudor@yahoo.com