On some subclasses of starlike and convex functions

Alina Totoi

Abstract

Throughout this paper, in the second section, we prove that if $f \in A$, $\alpha \geq 0$ and $F(z) = zf'(z)\left(\alpha + \frac{zf'(z)}{f(z)}\right)$ is starlike then f is a starlike function and, in the third section, we prove that if $\alpha \in [0,1)$, $f \in A$ and $F(z) = zf'(z)\left(1 + \frac{zf''(z)}{f'(z)}\right)$ is starlike of order α then f is a convex function of order α.

2000 Mathematics Subject Classification: 30C45

Key words and phrases: meromorphic starlike functions, meromorphic convex functions

1 Introduction and preliminaries

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc in the complex plane and $H(U) = \{f : U \rightarrow \mathbb{C} : f$ is holomorphic in $U\}$.

We will also use the following notations:

$H[a,n] = \{f \in H(U) : f(z) = a + a_nz^n + a_{n+1}z^{n+1} + \ldots\}$ for $a \in \mathbb{C}$, $n \in \mathbb{N}^*$,

1 Received 8 March, 2008

Accepted for publication (in revised form) 10 September, 2008
\[A_n = \{ f \in H(U) : f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \ldots \}, \ n \in \mathbb{N}^*, \] and for \(n = 1 \) we denote \(A_1 \) by \(A \) and this set is called the class of analytic functions normalized in the origin.

Let \(S \) be the class of holomorphic and univalent functions on the unit disc which are normalized with the conditions \(f(0) = 0, \ f'(0) = 1, \) so

\[S = \{ f \in A : f \text{ is univalent in } U \}. \]

Definition 1.1. ([3]) Let \(f : U \to \mathbb{C} \) be a holomorphic function with \(f(0) = 0. \) We say that \(f \) is starlike in \(U \) with respect to zero (or, in brief, starlike) if the function \(f \) is univalent in \(U \) and \(f(U) \) is a starlike domain with respect to zero, meaning that for each \(z \in U \) the segment between the origin and \(f(z) \) lies in \(f(U). \)

Theorem 1.1. ([3]) (the theorem of analytical characterization of starlikeness) Let \(f \in H(U) \) be a function with \(f(0) = 0. \) Then \(f \) is starlike if and only if \(f'(0) \neq 0 \) and

\[\text{Re} \frac{zf'(z)}{f(z)} > 0, \quad z \in U. \]

Let \(S^* \) be the class of normalized starlike functions on the unit disc \(U, \) so

\[S^* = \left\{ f \in A : \text{Re} \frac{zf'(z)}{f(z)} > 0, \quad z \in U \right\}. \]

Definition 1.2. ([3]) Let \(f : U \to \mathbb{C} \) be a holomorphic function. We say that \(f \) is convex on \(U \) (or, in brief, convex) if \(f \) is univalent in \(U \) and \(f(U) \) is a convex domain.

Theorem 1.2. ([3]) (the theorem of analytical characterization of convexity) Let \(f \in H(U). \) Then \(f \) is convex if and only if \(f'(0) \neq 0 \) and

\[\text{Re} \frac{zf''(z)}{f'(z)} + 1 > 0, \quad z \in U. \]
Let K be the class of normalized convex functions on the unit disc U and $K(\alpha)$ be the class of normalized convex functions of order α, i.e.

$$K(\alpha) = \left\{ f \in A : \text{Re} \frac{zf''(z)}{f'(z)} + 1 > \alpha, \ z \in U \right\}.$$

Lemma 1.1. ([2]) Let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ be a function that satisfies the condition

$$\text{Re} \psi(\rho i, \sigma, \mu + iv; z) \leq 0,$$

when $\rho, \sigma, \mu, \nu \in \mathbb{R}, \sigma \leq -\frac{n}{2}(1 + \rho^2), \sigma + \mu \leq 0$, for $z \in U, n \geq 1$.

If $p \in H[1,n]$ and

$$\text{Re} \psi(p(z),zp'(z),z^2p''(z); z) > 0, \quad z \in U$$

then

$$\text{Re} p(z) > 0, \quad z \in U.$$

Definition 1.3 (1). Let $\alpha, \beta \in \mathbb{R}, n \in \mathbb{N}^*, f \in A_n$ with

$$\frac{f(z)f'(z)}{z} \neq 0, \ 1 - \alpha + \alpha \frac{zf'(z)}{f(z)} \neq 0, \ z \in U.$$

We say that the function f is in the class $M_n^{\alpha,\beta}$ if the function $F : U \to \mathbb{C}$, defined as

$$F(z) = f(z)\left[\frac{zf''(z)}{f(z)}\right]^\alpha(1-\beta) \cdot \left[1 - \alpha + \alpha \frac{zf'(z)}{f(z)}\right]^\beta$$

is a starlike function on the unit disc U.

Remark 1.1. ([1])

1. If $\beta = 0$ then $F(z) = f(z)\left[\frac{zf''(z)}{f(z)}\right]^\alpha, \ z \in U$ and $M_{\alpha,0}^1 = M_{\alpha}$ (the class of α-convex functions).

2. If $\beta = 1$ then $F(z) = (1 - \alpha)f(z) + \alpha zf'(z), \ z \in U$ and $M_{\alpha,1}^1 = P_{\alpha}$ (the class of α-starlike functions defined by N.N. Pascu).
3. If $\alpha = 0$ then $F(z) = f(z)$, $z \in U$ and $M_{0,\beta}^1 = S^*$ (the class of starlike functions).

4. If $\alpha = 1$ then $F(z) = zf'(z)$, $z \in U$ and $M_{1,\beta}^1 = K$ (the class of convex functions).

Remark 1.2. ([1]) For all real numbers α, β satisfying the condition $\alpha \beta (1 - \alpha) \geq 0$ we have

$$M_{\alpha,\beta}^n \subset S^*.$$

2 A subclass of starlike functions

Definition 2.1. Let $\alpha \geq 0$ and $f \in A$ such that

$$\frac{f(z)f'(z)}{z} \neq 0, \alpha + \frac{zf'(z)}{f(z)} \neq 0, z \in U.$$

We say that the function f is in the class N_α if the function $F : U \to \mathbb{C}$ given by

$$F(z) = z f'(z) \left(\alpha + \frac{zf'(z)}{f(z)} \right)$$

is starlike in U.

Theorem 2.1. For each real number $\alpha \geq 0$ we have

$$N_\alpha \subset S^*.$$

Proof. Let $f \in N_\alpha$, $f \in A$ with $\frac{f(z)f'(z)}{z} \neq 0$ and $\alpha + \frac{zf'(z)}{f(z)} \neq 0$, $z \in U$.

We denote $\frac{zf'(z)}{f(z)} = p(z)$, $z \in U$. We have $p \in H[1,1]$ and $F(z) = zf'(z) \cdot (\alpha + p(z))$. (We make the remark that $F(0) = 0$ and $F'(0) = \alpha + 1 \neq 0$).

For $z \in U \setminus \{0\}$ we apply the logarithm to the equality $F(z) = zf'(z)(\alpha + p(z))$ and we obtain:

$$\log F(z) = \log z + \log f'(z) + \log(\alpha + p(z)).$$
If we derive the above equality (with respect to the independent variable \(z \)) and, afterwards, we multiply the result with \(z \), we will obtain:

\[
(1) \quad \frac{zF'(z)}{F(z)} = 1 + \frac{zf''(z)}{f'(z)} + \frac{zp'(z)}{\alpha + p(z)}.
\]

But \(\frac{zf'(z)}{f(z)} = p(z) \) implies that \(zf'(z) = p(z)f(z) \) and deriving this equality we obtain

\[
f'(z) + zf''(z) = p'(z)f(z) + p(z)f'(z) \quad |: \quad f'(z) \neq 0,
\]

so

\[
1 + \frac{zf''(z)}{f'(z)} = p'(z) \cdot z \cdot \frac{1}{p(z)} + p(z).
\]

We will replace the last equality in (1) and we will have:

\[
\frac{zF'(z)}{F(z)} = \frac{zp'(z)}{p(z)} + p(z) + \frac{zp'(z)}{\alpha + p(z)}, \quad z \in U \setminus \{0\}.
\]

We make the remark that the above equality is also verified for \(z = 0 \).

We denote

\[
(2) \quad \psi(p(z),zp'(z);z) = p(z) + zp'(z)\left(\frac{1}{p(z)} + \frac{1}{\alpha + p(z)}\right)
\]

From Definition 2.1 we know that the function \(F \) is starlike, so

\[
(3) \quad \text{Re} \frac{zF'(z)}{F(z)} > 0, \quad z \in U.
\]

Using the notation (2) the condition (3) is equivalent with

\[
\text{Re} \psi(p(z),zp'(z);z) > 0, \quad z \in U.
\]

Making the calculus we have:

\[
\text{Re} \psi(is,t) = \text{Re} \left[is + t\left(\frac{1}{is} + \frac{1}{\alpha + is}\right)\right] =
\]
\[\text{Re} \left[is + t \left(\frac{-is}{s^2} + \frac{\alpha - is}{\alpha^2 + s^2} \right) \right] = \frac{t \alpha}{\alpha^2 + s^2} \leq \frac{-\alpha(1 + s^2)}{2(\alpha^2 + s^2)} \leq 0, \]

for all \(t \leq -\frac{1}{2}(1 + s^2) \) and \(s \in \mathbb{R} \).

Consequently, we have obtained \(\text{Re} \psi(is, t) \leq 0 \) for all \(s \in \mathbb{R} \) and \(t \leq -\frac{1 + s^2}{2} \) and

\[\text{Re} \psi(p(z), zp'(z); z) > 0, \quad z \in U, \quad p \in H[1, 1], \]

from where it results that

\[\text{Re} p(z) > 0, \quad z \in U. \]

So, returning to the notation \(\frac{zf'(z)}{f(z)} = p(z) \) we obtain

\[\text{Re} \frac{zf'(z)}{f(z)} > 0, \quad z \in U, \]

and that means that \(f \in S^* \). So, \(N_\alpha \subset S^* \).

3 A subclass of convex functions of order \(\alpha \)

Definition 3.1. Let \(\alpha \in [0, 1) \) and \(f \in A \) with

\[\frac{f(z)f'(z)}{z} \neq 0, \quad 1 + \frac{zf''(z)}{f'(z)} \neq 0, \quad z \in U. \]

We say that the function \(f \) is in the class \(N(\alpha) \) if the function \(F : U \to \mathbb{C} \) given by

\[F(z) = zf'(z) \left(1 + \frac{zf''(z)}{f'(z)} \right), \]

is starlike of order \(\alpha \).

Theorem 3.1. For \(\alpha \in [0, 1) \) we have

\[N(\alpha) \subset K(\alpha). \]
Proof. Let \(f \in N(\alpha) \). We denote \(1 + \frac{zf''(z)}{f'(z)} = (1 - \alpha)p(z) + \alpha p(z) \). We have \(p \in H[1, 1] \) and \(F(z) = zf'(z)[(1 - \alpha)p(z) + \alpha] \). Using the logarithmic derivation and the multiplying with \(z \) we obtain:

\[
\frac{zF'(z)}{F(z)} = 1 + \frac{zf''(z)}{f'(z)} + \frac{(1 - \alpha)p'(z) \cdot z}{(1 - \alpha)p(z) + \alpha} =
\]

\[
= (1 - \alpha)p(z) + \alpha + \frac{zp'(z)(1 - \alpha)}{(1 - \alpha)p(z) + \alpha}
\]

which is equivalent with

\[
(4) \quad \frac{zF'(z)}{F(z)} - \alpha = (1 - \alpha)p(z) + \frac{(1 - \alpha)zp'(z)}{(1 - \alpha)p(z) + \alpha}.
\]

We denote

\[
(5) \quad \psi(p(z),zp'(z);z) = (1 - \alpha)p(z) + \frac{zp'(z)(1 - \alpha)}{(1 - \alpha)p(z) + \alpha}, \ z \in U.
\]

We know that \(f \in N(\alpha) \), so \(F \) is starlike of order \(\alpha \), and hence

\[
(6) \quad \text{Re} \frac{zF'(z)}{F(z)} > \alpha, \ z \in U.
\]

Using (4) and the notation (5), the condition (6) is equivalent with

\[
\text{Re} \psi(p(z),zp'(z);z) > 0, \ z \in U.
\]

Making the calculus we have

\[
\text{Re} \psi(is,t) = \text{Re} \left[(1 - \alpha)is + \frac{t(1 - \alpha)}{(1 - \alpha)is + \alpha} \right] =
\]

\[
= \frac{\alpha(1 - \alpha)t}{(1 - \alpha)^2s^2 + \alpha^2} \leq -\frac{\alpha(1 - \alpha)(1 + s^2)}{2[(1 - \alpha)^2s^2 + \alpha^2]} \leq 0
\]

for \(\alpha \in [0, 1) \), \(s \in \mathbb{R} \) and \(t \leq -\frac{1}{2}(1 + s^2) \).
Consequently, we have obtained $\Re \psi(is, t) \leq 0$ for all $s \in \mathbb{R}$ and $t \leq -\frac{1 + s^2}{2}$ and

$$\Re \psi(p(z), zp'(z); z) > 0, \ z \in U, \ p \in H[1, 1],$$

from where it results that

$$\Re p(z) > 0, \ z \in U.$$

Returning to the notation $1 + \frac{zf''(z)}{f'(z)} = (1 - \alpha)p(z) + \alpha$ and using the inequality $\Re p(z) > 0, \ z \in U$ we obtain $\Re \left(1 + \frac{zf''(z)}{f'(z)}\right) = (1 - \alpha)\Re p(z) + \alpha > \alpha$ for $\alpha \in [0, 1)$, so $f \in K(\alpha)$.

Finally we have $N(\alpha) \subset K(\alpha)$.

References

Department of Mathematics, Faculty of Science, University "Lucian Blaga" Sibiu, Romania
E-mail: totoialina@yahoo.com