A note on a general integral operator of the bounded boundary rotation1

S. Latha

Abstract

In this note, we consider the classes of bounded radius rotations, bounded radius rotation of order β, bounded boundary rotation. In these classes we study some properties of a general integral operator.

2000 Mathematics Subject Classification: 30C45

Key words and phrases: Functions of bounded boundary rotation, Functions of bounded radius rotation, Integral operator and Univalent function.

1 Introduction

Let $\mathcal{P}_k^\lambda(\beta)$ denote the class of analytic functions $p(z)$ in defined in the unit disc $U = \{z : |z| < 1\}$ with the following properties:

(i). $p(0) = 1$

(ii). $\int_0^{2\pi} \left| \Re\left\{ e^{i\lambda} p(z) - \beta \cos \lambda \right\} \right| \frac{1}{1 - \beta} d\theta \leq k\pi \cos \lambda$

1Received 28 December, 2007
Accepted for publication (in revised form) 13 March, 2008
where, \(k \geq 2 \), \(\lambda \) real, \(|\lambda| < \frac{\pi}{2}\), \(0 \leq \beta < 1 \) and \(z = re^{i\theta} \) for \(0 \leq r < 1 \).

Let \(\mathcal{V}_k^\lambda(\beta) \) [4] denote the class of functions \(f \) analytic in \(U \) with the normalized properties \(f(0) = f'(0) - 1 = 0 \) and

\[1 + \frac{zf''(z)}{f'(z)} \in \mathcal{P}_k^\lambda(\beta), \quad z \in U \]

where, \(k, \lambda \) and \(\beta \) are as above. For \(\beta = 0 \) we get the class \(\mathcal{V}_k^\lambda \) of functions with bounded boundary rotation studied by Moulis [3].

Any function \(f \in \mathcal{V}_k^\lambda(\beta) \) if and only if

\[\Re \left\{ e^{i\lambda} \left(1 + \frac{zf''(z)}{f'(z)} \right) \right\} > \beta \cos \lambda, \quad \text{for} \quad |z| < \frac{k - \sqrt{k^2 - 4}}{2}. \]

A function \(f \) defined in \(U \) with the normalization properties \(f(0) = 0 \) and \(f'(0) = 1 \) is said to be in the class \(\mathcal{U}_k^\lambda(\beta) \) if \(\frac{zf'}{f} \in \mathcal{P}_k^\lambda(\beta) \).

From the definition of the above classes it follows that \(f \in \mathcal{V}_k^\lambda(\beta) \) if and only if \(zf' \in \mathcal{U}_k^\lambda(\beta) \).

Now we consider the integral operator \(F_n(z) \) [2], defined by

\[(1.1) \quad F_n(z) = \int_0^z \left(\frac{f_1(t)}{t} \right)^{\alpha_1} \cdots \left(\frac{f_n(t)}{t} \right)^{\alpha_n} \, dt \]

and we study its properties.

Remark 1.1. We observe that for \(n = 1 \) and \(\alpha_1 = 1 \), we obtain the integral operator of Alexander [1], \(F(z) = \int_0^z \frac{f(t)}{t} \, dt \).

2 Main results

Theorem 2.1. Let \(\alpha_i \) be real numbers with the properties \(0 \leq \alpha_i < 1 \) for \(i \in \{1, 2, \ldots, n\} \) and \(\sum_{i=1}^n \alpha_i \leq n + 1 \). If \(f_i \in \mathcal{U}_k^\lambda \left(\frac{1}{\alpha_i} \right) \) then the integral operator defined in (1.1) belongs to \(\mathcal{V}_k^\lambda \).
Proof. Consider,

$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t} \right)^{\alpha_1} \cdots \left(\frac{f_n(t)}{t} \right)^{\alpha_n} dt.$$

We determine the derivatives of the first and second order for F_n.

$$F'_n(z) = \left(\frac{f_1(z)}{z} \right)^{\alpha_1} \cdots \left(\frac{f_n(z)}{z} \right)^{\alpha_n}$$

$$F''_n(z) = \sum_{i=1}^{n} \alpha_i \left(\frac{f_i(z)}{z} \right)^{\alpha_i-1} \frac{zf'_i(z) - f_i(z)}{z^2} \prod_{j=1, j\neq i}^{n} \left(\frac{f_j(z)}{z} \right)^{\alpha_j}$$

$$\frac{z F''_n(z)}{F'_n(z)} + 1 = \alpha_1 \frac{zf''_1(z)}{f'_1(z)} + \cdots + \alpha_n \frac{zf''_n(z)}{f'_n(z)} - \alpha_1 - \cdots - \alpha_n + 1$$

$$\Re \left\{ e^{i\lambda} \left(\frac{zf''_n(z)}{F'_n(z)} + 1 \right) \right\} = \alpha_1 \Re \left\{ e^{i\lambda} \frac{zf''_1(z)}{f'_1(z)} \right\} + \cdots + \alpha_n \Re \left\{ e^{i\lambda} \frac{zf''_n(z)}{f'_n(z)} \right\}$$

$$+ \Re \left\{ e^{i\lambda} (-\alpha_1 - \cdots - \alpha_n + 1) \right\}$$

$$= (n+1) \cos \lambda - \sum_{i=1}^{n} \alpha_i \cos \lambda > 0.$$

Hence $F_n \in \mathcal{V}_k^\lambda$.

Corollary 2.2. For parametric values $k = 2$, $\lambda = 0$, we get the following result [2].
Let α_i, $i \in \{1, 2, \ldots, n\}$ be real numbers with the properties $\alpha_i > 0$ for $i \in \{1, 2, \ldots, n\}$ and $\sum_{i=1}^{n} \alpha_i \leq n + 1$. We suppose that the functions f_i,
\(i \in \{1, 2, \ldots, n\} \) are starlike functions of order \(\frac{1}{\alpha_i}, \ i \in \{1, 2, \ldots, n\} \), that is \(f_i \in S^\ast \left(\frac{1}{\alpha_i} \right) \) for all \(i \in \{1, 2, \ldots, n\} \). Then the integral operator defined in (1.1) is convex.

Theorem 2.3. Let \(\alpha_i \) be real numbers with the properties \(\alpha_i > 0 \) for \(i \in \{1, 2, \ldots, n\} \) with \(\sum_{i=1}^{n} \alpha_i \leq 1 \) and \(f_i \in U^\lambda_k \left(\frac{1}{\alpha_i} \right) \). Then the integral operator defined in (1.1) belongs to \(V^\lambda_k(\alpha) \), where \(\alpha = 1 - \sum_{i=1}^{n} \alpha_i \).

Proof. Consider,
\[
\frac{zF''_n(z)}{F'_n(z)} = \sum_{i=1}^{n} \alpha_i \left(\frac{zf'_i(z)}{f_i(z)} - 1 \right)
= \sum_{i=1}^{n} \alpha_i \frac{zf'_i(z)}{f_i(z)} - \alpha_1 - \ldots - \alpha_n.
\]
\[
1 + \frac{zF''_n(z)}{F'_n(z)} = \alpha_1 \frac{zf'_1(z)}{f_1(z)} + \ldots + \alpha_n \frac{zf'_n(z)}{f_n(z)} - \alpha_1 - \ldots - \alpha_n + 1.
\]
\[
\Re \left\{ e^{i\lambda} \left(\frac{zF''_n(z)}{F'_n(z)} + 1 \right) \right\} = \alpha_1 \Re \left\{ e^{i\lambda} \frac{zf'_1(z)}{f_1(z)} \right\} + \ldots + \alpha_n \Re \left\{ e^{i\lambda} \frac{zf'_n(z)}{f_n(z)} \right\}
+ \Re \left\{ e^{i\lambda} (-\alpha_1 - \ldots - \alpha_n + 1) \right\}.
\]
But \(f_i \in U^\lambda_k \) for all \(i \in \{1, 2, \ldots, n\} \). Therefore
\[
\Re \left\{ e^{i\lambda} \frac{zf'_i(z)}{f_i(z)} \right\} > 0, \ \forall \ i \in \{1, 2, \ldots, n\}.
\]
This implies,
\[
\Re \left\{ e^{i\lambda} \left(\frac{zF''_n(z)}{F'_n(z)} + 1 \right) \right\} > 1 - \sum_{i=1}^{n} \alpha_i = \alpha.
\]
Hence \(F_n \in U^\lambda_k(\alpha) \).
Corollary 2.4. For parametric values $k = 2, \lambda = 0$, we get the following result [2].

Let $\alpha_i, i \in \{1, 2, ..., n\}$ be real numbers with the properties $\alpha_i > 0$ for $i \in \{1, 2, ..., n\}$ and $\sum_{i=1}^{n} \alpha_i \leq 1$. We suppose that the functions f_i, with $i \in \{1, 2, ..., n\}$ are starlike. Then the integral operator defined in (1.1) is convex by order $1 - \sum_{i=1}^{n} \alpha_i$.

References

Department of Mathematics
Yuvaraja’s College
University of Mysore
Mysore - 570 005
INDIA.
E-mail: drlatha@gmail.com