Solution of a polylocal problem using Tchebychev polynomials

Eugen Drăghici, Daniel Pop

Abstract

Consider the problem:

\[Ly(x) = r(x), \quad -1 \leq x \leq 1, \]
\[y(a) = A, \quad y(b) = B \]
\[-1 < a < b < 1, \quad a, b, A, B \in \mathbb{R}, \]

where

\[Ly(x) := -\frac{d}{dx} \left(\frac{dy}{dx} \right) + q(x) \cdot y(x), \quad -1 \leq x \leq 1 \]

and

\[q(x), r(x) \in C[-1, 1], \quad y(x) \in C^2[-1, 1]. \]

The aim of this paper is to present an approximate solution of this problem based on Tchebychev polynomials. We construct the approximation using Tchebychev-Gauss-Lobatto interpolation nodes. Also we use Maple 10 to obtain numerical results.

Dedicated to the memory of prof. Alexandru Lupas (1942-2007)

2000 Mathematical Subject Classification: 34B10
1 Introduction

The purpose of this paper is to approximate the solution of the following problem:

\[\begin{cases}
L_0(x) = r(x), & -1 \leq x \leq 1, \\
y(a) = A, & y(b) = B \\
-1 < a < b < 1, & a, b, A, B \in \mathbb{R},
\end{cases} \]
(1)

where:

\[L_0(x) := -\frac{d}{dx}(\frac{dy}{dx}) + q(x) \cdot y(x), \quad -1 \leq x \leq 1 \]
(2)

and \(q(x), r(x) \in C[-1, 1], \ y(x) \in C^2[-1, 1], \) using a Collocation method.

This is not a two boundary value problem since \(-1 < a < b < 1\).

We have two initial value problem on \([-1, a]\) and \([b, 1]\), respectively, and on \([a, b]\) a classical boundary value problem, the existence and the uniqueness for (1) assure existence and uniqueness of these problems.

Historical note. In 1966, two researchers from Tiberiu Popoviciu Institute of Romanian Academy, Cluj-Napoca, Dumitru Ripianu and Oleg Arama published a paper on a polylocal problem, see ([6]).

2 Principles of the method

The implementation is inspired from ([2]). Our method is based on first kind Tchebychev polynomials ([3]) and ([5]).
Solution of a polylocal problem using Tchebychev polynomials

Definition 1 The polynomials $T_n(x), n \in \mathbb{N}$ defined by:

\begin{equation}
T_n(x) := \cos(n \arccos(x)), x \in [-1, 1]
\end{equation}

are called the Tchebychev polynomials of the first kind.

Definition 2 The polynomials $U_n(x), n \in \mathbb{N}$ defined by:

\begin{equation}
U_n(x) = \frac{\sin(n + 1) \cdot \arccos x}{(n + 1) \cdot \sqrt{1 - x^2}}
\end{equation}

are called the Tchebychev polynomials of the second kind.

To describe the basic method in this and later section we choose a nonuniform mesh of the given interval $[-1, 1]$ therefore:

\begin{equation}
\Delta : x_j = \cos \frac{j \cdot \pi}{n}, \; j = 1, \ldots, n.
\end{equation}

The are the zeros of Tchebychev polynomials of second kind.

The form of solution is:

\begin{equation}
u(x) = \sum_{k=0}^{n+1} c_k \cdot T_k(x)
\end{equation}

where $T_k(x)$ is the k-th degree first kind Tchebychev polynomials on interval $[-1, 1]$.

We shall choose the basis such that the following conditions hold:

- the solution verifies the differential equation

\begin{equation}
Lu(x_j) = r_j, j = 1, 2, \ldots n
\end{equation}
the solution verifies

\begin{equation}
\begin{aligned}
u(a) &= A, \\
u(b) &= B.
\end{aligned}
\end{equation}

We choose this mesh (3), because in ([2], pag30) prove that interpolation at Tchebychev points is nearly optimal. Since the mesh (3) has \(n \) points, we include the points \(a, b \) and suppose that \(a, b \neq x_j \) for all \(j = 1, 2, \ldots n \).

Remark 1

- If \(a = x_j, b = x_j \) then we increment \(n \).
- The method do not depend on conditions on \(q(x) \).
- The Tchebychev polynomials are generated via the orthopoly package with the Maple sequence:

\begin{verbatim}
> S := (x, k, a, b) -> T(k, ((b-a)*x + a + b)/2):;
\end{verbatim}

3 Numerical Results

We shall give two examples. For each example we plot the exact and approximate solution and generate the execution profile with the pair `profile-showprofile` see ([4])

- **First we approximate a oscillating solution**:

\begin{equation}
\begin{aligned}
-Z''(t) - 243 \cdot Z(t) &= t; -1 \leq t \leq 1 \\
Z(-1) &= Z(1) = 0
\end{aligned}
\end{equation}
Solution of a polylocal problem using Tchebychev polynomials

with conditions:

\[Z \left(-\frac{1}{4}\right) = -\sin\left(\frac{\sqrt{3}}{4}\right) + \frac{1}{243 \sin(9\sqrt{3})} + \frac{1}{972} \quad (10) \]

\[Z \left(\frac{1}{2}\right) = \frac{\sin\left(\frac{\sqrt{3}}{2}\right)}{243 \sin(9\sqrt{3})} - \frac{1}{486} \quad (11) \]

The exact solution provided by \textit{dsolve} is:

\[Z(t) = \frac{\sin(9\sqrt{3}t) - t \sin(9\sqrt{3})}{243 \sin(9\sqrt{3})} \]

Since

\[\int_{-1}^{1} |q(x)| \, dx > 2 \]

using disconjugate criteria given by Lyapunov (1893) the problem (9) has an oscillatory solution. We used Maple 8 to solve the problem exactly and to approximate the solution, for \(n = 17 \) and \(n = 50 \). We also plot the error in semilogarithmic scale.

The code Maple is:

\[
\text{restart; with(orthopoly); with(CodeTools); with(plots):}
\]
\[
S := (x, k, a, b) \rightarrow T(k, ((b-a)*x+a+b)/2);
\]
\[
S := (x, k, a, b) \rightarrow T(k, 1/2 \cdot (b - a) \cdot x + 1/2 \cdot a + 1/2 \cdot b)
\]
\[
genceb := \text{proc}(x, n, q, r, c0, d0, alpha, beta)
\]
\[
\text{local k, ecY, ecd, C, h, Y, c, a, b;}
\]
\[
\text{global S;}
\]
\[
a := x[0]; b := x[n-1];
\]
\[
Y := 0;
\]
Solution of a polylocal problem using Tchebychev polynomials

> for k from 0 to n+1 do
> Y:=Y+c[k]*S(t,k,a,b);
> end do;
> Y:=simplify(Y);
> ecY:=-diff(Y,t$2)+q(t)*Y=r(t):
> ecd:=Array(0..n+1);
> for k from 0 to n-1 do
> ecd[k]:=eval(ecY,t=x[k]):
> end do;
> ecd[n]:=eval(Y,t=c0)=alpha:
> ecd[n+1]:=eval(Y,t=d0)=beta:
> C:=solve({seq(ecd[k],k=0..n+1)},{seq(c[k],k=0..n+1)});
> assign(C):
> return Y:
> end proc:

#we define the function from differential equations
> q:=t->-243; r:=t->t:
> ecz:=-diff(Z(t),t$2)+q(t)*Z(t)=r(t):
> dsolve({ecz,Z(-1)=0,Z(1)=0},Z(t)):simplify(%):
> assign(%):
> n:=17: b:=1: a:=-1: c0:=-1/4: d0:=1/2:alpha:=eval(Z(t),t=c0):
> beta=eval(Z(t),t=d0);
> u:=[-1/4,seq((b-a)/2*cos(k*Pi/n)+(a+b)/2,k=1..n),1/2];
> u:=sort(evalf(u)):
> n:=nops(u); x:=Array(0..n-1,u):
Solution of a polylocal problem using Tchebychev polynomials

> eval(x):
> profile(genceb): Y:=genceb(x,n,q,r,-1/4,1/2,alpha,beta)
> plot(Y,t=-1..1,title=" Approx TCHEBYCHEV");
> plot(Z(t),t=-1..1,color=[GREEN],title="Exact Solution");
> p1:=plot([Y,Z(t)],t=-1..1,title="Exact&Approx.solution;n=17");
> p2:=plots[pointplot]([[-1/4,eval(Z(t),t=-1/4)],[1/2,eval(Z(t),t=1/2)]],symbol=circle,symbolsize=30,color=[BLACK]);
> plots[display]({p1,p2});showprofile(genceb);
> plot(log(Y-Z(t)),t=-0.99..0.99,title="Error in Semilog. scale;n=17",color=[BLUE]);
> #quit

Fig. 1. The graph of exact and approximate solution, oscillating problem, n=17
Solution of a polylocal problem using Tchebychev polynomials

Fig. 2. Error plot, oscillating problem, n=17

Here are the profiles for the procedure in the case of oscillating solution:

<table>
<thead>
<tr>
<th>function</th>
<th>depth</th>
<th>calls</th>
<th>time</th>
<th>time%</th>
<th>bytes</th>
<th>bytes%</th>
</tr>
</thead>
<tbody>
<tr>
<td>genceb</td>
<td>1</td>
<td>1</td>
<td>1.907</td>
<td>100.00</td>
<td>37992012</td>
<td>100.00</td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>1</td>
<td>1.907</td>
<td>100.00</td>
<td>37992012</td>
<td>100.00</td>
</tr>
</tbody>
</table>

For $n = 50$, we obtain a very good approximation, but we must increase the number of decimals with Maple command:

$$> \text{Digits} := 18;$$
Fig. 3. The graph of exact and approximate solution, oscillating problem, n=50

Fig. 4. Error plot, oscillating problem, n=50
Here are the profiles for the procedures in the case of oscillating problem.

Here are the profiles for the procedure in the case of oscillating solution:

<table>
<thead>
<tr>
<th>function</th>
<th>depth</th>
<th>calls</th>
<th>time</th>
<th>time%</th>
<th>bytes</th>
<th>bytes%</th>
</tr>
</thead>
<tbody>
<tr>
<td>genceb</td>
<td>1</td>
<td>1</td>
<td>28.749</td>
<td>100.00</td>
<td>455186448</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>1</td>
<td>28.749</td>
<td>100.00</td>
<td>455186448</td>
<td>100.00</td>
</tr>
</tbody>
</table>

- The second example is a nonoscillating solution.

Example is from ([1, page 560]).

\[
-\ddot{y} - y = x, \quad x \in [-1, 1] \\
y(-1) = y(1) = 0
\]

(12)

with conditions:

\[
y\left(\frac{-1}{4}\right) = -\frac{\sin \frac{1}{4}}{\sin 1} + \frac{1}{4} \\
y\left(\frac{1}{2}\right) = \frac{\sin \frac{1}{2}}{\sin 1} - \frac{1}{2}
\]

The exact solution given by \texttt{dsolve} is \(y(t) = -\frac{\sin(t) + t \sin 1}{\sin 1} \). Since

\[
\int_{-1}^{1} |q(x)| \, dx \leq 2
\]

using disconjugate criteria given by Lyapunov (1893) the problem (12) has an nonoscillatory solution. For \(n = 10 \), we plot the graph of exact solution and approximation.
Fig. 5. The graph of exact and approximate solution, non oscillating problem, n=10

Fig. 6. Error plot, non oscillating problem
The profile in this case is:

<table>
<thead>
<tr>
<th>function</th>
<th>depth</th>
<th>calls</th>
<th>time</th>
<th>time%</th>
<th>bytes</th>
<th>bytes%</th>
</tr>
</thead>
<tbody>
<tr>
<td>genceb</td>
<td>1</td>
<td>1</td>
<td>0.406</td>
<td>100.00</td>
<td>9541308</td>
<td>100.00</td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>1</td>
<td>0.406</td>
<td>100.00</td>
<td>9541308</td>
<td>100.00</td>
</tr>
</tbody>
</table>

4 Acknowledgements

It is a pleasure to thank:

- prof. dr. Ion Păvăloiu (IC”Tiberiu-Popovici”, Cluj-Napoca)
- conf. dr Radu Tiberiu Trimbitas (”Babes-Bolyai” University Cluj-Napoca)

for introducing us to the subject matter of this paper.

References

Solution of a polylocal problem using Tchebychev polynomials

Eugen Drăghici
"Lucian Blaga" University
Department of Mathematics
Sibiu, Romania
e-mail: edraghici@gmail.com

Daniel Pop
Ro-Ger University Sibiu
Sibiu, Romania